
(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 1 of 124


Complex Number Module

Written and developed by Ángel Martin

May 2021

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 2 of 124

This compilation, revision A.9.2.0

Copyright © 2005-2021 Ángel M. Martin

Published under the GNU software licence agreement.

The author wishes to thank the contributors to this project in various ways, as follows:

Jean-Marc Baillard, a constant reference for all math routines. He also contributed programs for the
Riemann’s Zeta, Poly-Gamma and Complete Elliptic Integrals.

Greg McClure, who contributed the Complex Derivative engine and the Continued Fractions.

Håkan Thörngren for his assistance and advices on the Memory Buffer implementation,
W. Doug Wilder, who wrote the initial code for the non-merged functions in program mode,

Valentín Albillo, who wrote the original “PROOT” FOCAL program,
M. Luján García, who prepared the 41Z Keys overlay bitmap file.

Some graphics taken from http://www.clarku.edu/~djoyce/complex, copyright 1999 by David E. Joyce.

Some graphics taken from http//www.wikipedia.org

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow. See
http://www.hp41.org/

Original authors retain all copyrights, and should be mentioned in writing by any party utilizing this
material. No commercial usage of any kind is allowed.

http://www.clarku.edu/~djoyce/complex
http/www.wikipedia.org
http://www.hp41.org/

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 3 of 124



0. Preamble: a Complex Relapse. - Reloaded. 7

1. Introduction.

1.1. Function Launchers. 8
1.2. Last Function functionality 9

2. Complex Stack, number entering and displaying.

 2.1 Rectangular vs. Polar modes 11
2.2 Data entry conventions 12

3. User interface enhancements.

 3.1 Display and Conversion functions 13
 3.2 Complex Natural Data entry 14

3.3 The Complex User Assignments 17
3.4 The Complex Keyboard 18

4. Stack and Memory functions.

4.1. Stack functions group 22
4.2. ZSTO/ZRCL Math function groups 26

5. Complex Math.

 5.1. Simple Arithmetic 27
 5.2. Exponentials and Powers that be 29
 5.3. Complex Logarithm 34

6. Complex Geometry

 6.1 Basic functions 36
6.2 Complex Comparisons 39

7. Complex Trigonometry

 7.1 Basic Functions 42
 7.2 Complex Fibonacci numbers 45

8. 2D-vectors or complex numbers?

 8.1 Two parallel worlds 46
 8.2 Alternate Displaying: Quads and Tones 47

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 4 of 124

9. Polynomial Roots and Evaluations

 9.1. Polynomial Evaluation 48
 9.2. Polynomial Primitive and Derivatives 49

9.3. Solution to quadratic and cubic equations 50
9.4. General Polynomial Root Finder 53

10. It’s a Gamma-Zeta world out there

 10.1. Lanczos approximation 56

 10.2. Digamma and LnGamma 58
 10.3 Poly-Gamma function 60
 10.4 Inverse Gamma and Catalan Numbers 61
 10.5. Riemann’s Zeta function 62
 10.6. Lambert W function 64

11. Complex Means, Elliptic Integrals and DFT.

11.1. Arithmetic, Harmonic and Geometric Means 65
11.2. Dual-means: AGM and GHM 65
11.3. Complete Elliptic Integrals K(m), E(m) 66
11.4. Incomplete Elliptic Integrals, F(a; m) and E(a; m) 67
11.5. Discrete Fourier Transform (DFT) 70

12. General Methods and Special Functions

12.0. Real variable Functions 72

 12.1. Multi-valued functions Driver 73
12.2. Solutions to f(z)=0 75
12.3. Successive Approximation Method 81
12.4. Complex Function Derivatives 83
12.5. Complex Continued Fractions 87
12.6. Bessel Functions 91
12.7. Spherical Hankel functions 96
12.8. Weber & Anger functions 97
12.9. Dilogarithm and Polylogarithm 100
12.10 Lerch Transcendent 101
12.11 Exponential Integrals 102

Appendices.

a0.- Appendix: Delta-Wye Transformation 104
a0.- Saving & Restoring the Z-Stack in X-Memory 105
a1.- Complex Buffer functions 107
a2.- Complex Keyboard key-maps 113
a3.- Formula compendium 114
a4.- Quick Reference Guide 115
a5.- Complex functions logic 119

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 5 of 124

Appendix 0. – Sketch of the 41Z Launchers Map

The figure below shows the hierarchy and dependencies between all launchers. Note that only those

choices prompting to other levels are shown, not all prompting functions (like ZSTO, ZRCL, Z<>,
ZVIEW, ^IM/AG, etc.

Note. Within reason, this module adopts the general convention to always use MCODE headers for all

functions, even for those which really are FOCAL programs. This improves readability, reduces the code
size, and facilitates coding them as extensions to the launchers. The drawback is that the 41 OS

interprets the programs to be in PRIVATE mode and therefore you won’t be able to see the steps. Use

the program listings within this manual instead. Their names are in BLACK font color to differentiate
them from the native MCODE ones, which are in BLUE.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 6 of 124

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 7 of 124

41Z Deluxe – Complex Number Module for the HP-41

0. Preamble - A Complex Relapse - Reloaded

The 41Z module was the author’s first project to use a combination of both MCODE and math

techniques put together in service of a dedicated purpose. The design of the complex stack in particular

was the subject of careful implementation and extensive testing – glad to say the effort has paid off
and that the design has worked well to date.

This new revision benefits from bank-switching and the usage of Library#4 – a dedicated ROM packed

with MCODE routines used frequently and repeatedly by several other modules (SandMath, PowerCL
amongst others). Library#4 is located in page 4, and must be present on the system for this version of

the 41Z module to work properly. All interaction occurs behind the scenes and transparently to the

user.

There is a Library presence check made upon the Calculator ON event, showing an error message if it’s
not found - but otherwise the library is completely invisible to the user. Refer to the appropriate

instructions manual for installation details. For compatibility reasons, make sure you have revision “Q”
or higher of the Library#4 ROM.

Changing the original code to take advantage of the library took some effort, but the benefits of doing
so have been twofold: The revised code is more robust and better structured, plus a lot of room was

recovered and used for new functionality.

The following summarizes the most important changes in the Deluxe version:

1. Extended the memory access functions functionallity to fully support the stack registers. Both

directly and with indirect arguments, with dedicated prompts and interrelationships. Furthermore,

the function arguments are now entered as non-merged program lines directly by the function

itself. This implementation applies to ZRCL, ZSTO, Z<>, and ZVIEW and is a direct port from
the Total_Rekall module applied to complex registers. Also added RCL Math functions to the set.

2. Implemented an auxiliary FAT to allocate many other additions – mostly in the High-Level Math but

not exclusively. Also re-instated the less relevant functions (such as ZIMAG, ZREAL, ZHALF,

ZDBL, etc.) as sub-functions in the auxiliary FAT. The auxiliary FAT is also the home for all the

second-tier sub-launchers underneath the main ZL function, such as ZMTV, ZHYP, ZNXT, ZBSL,

etc.

3. Added sub-function launchers – ZF$ by name and ZF# by index#. This implementation is

analogous to other modules and adheres to the U/I guidelines developed for sub-function design

and usage. ALPHA prompts will be made directly in the by-name launchers. The sub-function index
is added as a non-merged program line in PRGM mode.

4. Convenient implementation of the “Last Function” functionality – for direct re-execution of the last

used function without retyping its name or navigating the launchers and menu structures. All
functions called from any of the dedicated launchers will be captured, included main-FAT entries or

functions from other modules as well.

5. Addition of MCODE implementations of the Continued Fractions evaluation (ZCF2V) and 10-point

Complex Derivative Engine (ZDERV) – both written by Greg McClure. Use it to calculate the first
and second derivatives of a user-defined function programmed in memory as a FOCAL routine

using the 41Z functions.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 8 of 124

6. Added set of MCODE functions for Complex Means (Arithmetic, Geometric, Harmonic and their dual

forms), as well as Polynomial Evaluation, including the first and second derivatives and its primitive.
The complex ZAGM will also be used for the Elliptic Integrals routines.

7. Added set of functions to calculate the Complete and incomplete Elliptic integrals of first and
second kinds - with complex amplitudes or modulus. Some routines require the SandMath module

to work.

8. Added multiple functions in the High-Level math section. Seven of them are to calculate the Error

function and the Exponential, Sine, Cosine (and their Hyperbolic counterparts) integrals – ZHGF,
the Complex Hypergeometric Function (written by Jean-Marc Baillard). ZERF, ZEI, ZCI, ZHCI,

ZSI, and ZHSI - all using the Hypergeometric Function method. The remaining three are ZLERCH
for the Lerch transcendental, plus ZLI2 and ZLIN, to calculate the Polylogarithm. All of them work

with complex arguments.

9. Usage of section headers, so they can be called in FOCAL programs to perform actual calculations.

This is the case for –ZVECTOR (which performs ZGPRD), -ZSTACK (which does HARMN) and –
HL ZMATH (which performs 2^X-1). These “hidden” functions are only used in dedicated sections

of the module and/or FOCAL programs. This includes double-duty usage of the new function
ZHGF –In RUN mode it is a new function launcher, grouping the functions that implement this

calculation method. However in a running program it performs the actual execution work.

10. Added two MCODE functions for the Discrete Fourier Transform calculation on a set of complex

data points, direct and inverse. ZDFT and ZIDFT will work on a set of complex data registers
defined by its control word bbb.eee in X – returning the transformed set to a contiguous set of

registers following that sample.

11. And last but not least, numerous changes in the code all throughout the module, rearranged

sections and overall improvement in the consistency and usability of the functions - notably
NXTNRT prompts when called from the ZNEXT launcher; now allows using the top two key rows

(A – J) for index shortcuts 1-10.

Warning: due to all those function removals and additions, this version of the 41Z module has slightly
different function arrangement in the FATs. If you have written your own programs using 41Z functions

they may not match the new XROM id#’s and therefore will need to be re-written. At this point in the

game this is highly unlikely, but just in case this is to be observed.

Note for Advanced Users:

The 41Z Deluxe is a bank-switched module. The bank switching will happen on both pages
simultaneously therefore the module should not be plugged on “straddled” port configurations. Note

also that you cannot configure only one page of the 41Z Deluxe module – therefore the footprint will

always take a complete external port in the ROM bus.

Page Bank-1 Bank-2

Upper Page
XROM #04

Main FAT w/ High-Level
Math, Zvectors,

Function Tables and
Launcher M-Code

Lower Page
XROM #01

Main and Aux-FATs, Z-stack
Lower-level Math Routines.

MCODE only.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 9 of 124

1. Introduction.

Complex Number handling is perhaps the most notable area where the HP-41 didn’t have a

comprehensive set of native functions, written in machine code and so taking advantage of the speed
and programming enhancements derived from it. While both the Math Pack and the Advantage Rom

provide FOCAL programs for complex number treatment, neither of them could be properly consider as
a full function set to the effect of, for instance, the powerful Matrix handling functions contained in the

Advantage Rom (in turn an evolution of those implemented in the CCD Module).

The 41Z module provides a significant number of functions that should address the vast majority of

complex number problems, in a user-friendly context, and with full consistency. To that goal this
manual should also contribute to get you familiar with their usage and applications, hopefully learning a

couple of new things and having some fun during the process.

The implementation provided in this 16k-module is a fourth-generation code, building on the initial 41Z

ROM released by the author in April 2005 – and on the previous version released in 2009. Numerous
improvements have been added to the initial function set, notably the addition of a 4-level complex
stack, a POLAR mode, and a fully featured complex mode keyboard. Memory management is facilitated
by prompting functions that deal with complex arguments, like ZSTO, ZRCL, (both with full math

support), Z<>, and ZVIEW – all of them fully programmable as well.

1.1. Launchers and Last Function functionality.

The 41Z Deluxe includes full support for the “LASTF” functionality. This is a handy choice for repeat

executions of the same function (i.e. to execute again the last-executed function), without having to

type its name or navigate the different launchers to access it.

The implementation is not universal – it only covers functions invoked using the dedicated launchers,
but not those called using the mainframe XEQ function. The following table summarizes the launchers

that include this feature:

Module Launchers LASTF Method

41Z “Deluxe” ZL _ Captures (sub)fnc id#

 ZHGF, ZPRT, ZNEXT, ZBSL, ZHYP Captures (sub)fnc id#

 ZF$ _ Captures fnc NAME

 ZF# _ _ _ Captures (sub)fnc id#

 CAT+ (XEQ) Captures (sub)fnc id#

LASTF Operating Instructions

The Last Function feature is triggered by pressing the radix key (decimal point - the same key used by

LastX) twice at the “Z: ” prompt. When this feature is invoked, it first shows “LASFT” briefly in the

display, quickly followed by the last-function name. Keeping the key depressed for a while shows

“NULL” and cancels the action. In RUN mode the function is executed, and in PRGM mode it’s added as

a program step if programmable, or directly executed if not programmable.

If no last-function record yet exists, the error message “NO LASTF” is shown. If the buffer #9 (used to

store the last function id# code) is not present, the error message is “NO BUF” instead.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 10 of 124

2. Complex Stack, number entering and displaying.

A four-level complex stack is available to the user to perform all complex calculations. The complex
stack levels are called U, V, W, and Z – from top to bottom. Each level holds two real numbers, the

imaginary and real parts of the corresponding complex number. Besides them, a “LastZ” complex

register S temporarily stores the argument of the last executed function.

The complex stack uses a dedicated buffer in main memory. It is

created and maintained by the 41Z module and its operation should
be transparent to the user. This buffer is independent from the real

stack (X, Y, Z, and T registers) but it’s important however to
understand how they interact with each other. A complex number

uses two real stack levels (like X and Y), but a single complex stack

level (like Z or W). The figure on the left shows the relationship
between the complex and real stacks, which is automatically

maintained upon function execution, as we’ll see later on.

The real stack is used to enter the complex number values, real and imaginary parts. The input

sequence varies depending on the method used but all functions will expect the imaginary part in the Y
register and the real part in the X register. More about this later.

The contents of complex and real stack levels are automatically synchronized before and after each
complex operation is performed. This may just involve real levels X,Y and complex level Z if it’s a

monadic (or unary) operation requiring a single complex argument, or may also involve real levels Z,T

and complex level W if it’s a dual operation requiring two complex arguments.

Monadic functions will assume that the real numbers in X,Y are the most up-to-date values for the
real and imaginary parts of the complex argument. They will overwrite the contents of complex level Z.

This allows quick editing and modification of the complex argument prior to executing the function.

Dual functions will assume that the second argument is stored in W, that is level 2 of the complex

stack, and will thus ignore the values contained in real stack registers Z,T. Note that because the real
stack overflows when trying to hold more than four different values, it is not a reliable way to input two

complex numbers at once.

The design objective has been to employ as much as possible the same rules and conventions as for

the real number stack, only for complex numbers instead. This has been accomplished in all aspects of
data entering, with the exception of automated complex stack lift: with a few exceptions, entering two

complex numbers into the complex stack requires pressing ZENTER^ to separate them.

Once again: entering two complex numbers into the complex stack is accomplished by executing

ZENTER^ to separate the first and second complex number. Exceptions to this rule are the other
complex-stack lifting functions, such as ZGEU, LASTZ, ZPI, ZRCL, ZRPL^, ZIMAG^, ZREAL^,

^IM/AG, and the “Complex Keypad”. Here the left-side symbol “^” (SHIFT-N) represents an input
action.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 11 of 124

2.1 Rectangular vs. Polar forms.

The HP-41 sorely lacks a polar vs. Rectangular mode. This limitation is also overcome on the 41Z
module, with the functions POLAR and RECT to switch back and forth between these modes. It uses

an internal flag in the complex buffer, not part of the 41 system flags. The operation is simplified in
that complex numbers are always stored in their rectangular (or Cartesian) form, z=x+yi.

So while all functions expect the argument(s) in rectangular form, yet the results are shown in the
appropriate format as defined by the POLAR or RECT mode. (The notable exception is ZPOL, which is

stored as values in Polar form). However, direct manual entry of complex in polar form is also possible
using the ^IM/AG function described in the following pages.

Note also that the POLAR mode is directly affected by the angular mode as well, as it occurs with real

argument values.

Note: The POLAR display of the complex number requires an additional R-P conversion after the result

is calculated in Cartesian form. The Polar form is temporarily stored in the Real stack registers T,Z –
which typically have no active role in the Complex Stack and therefore can always be used as scratch.

Once again, no changes are made to either X,Y registers or Complex stack level Z.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 12 of 124

2.2 Data Entry Conventions

And how about complex number entering? Here the world divides in two camps, depending on whether
the sequence is: “Re(z), ENTER^, Im(z)” – like on the HP-42S - , or its reverse: “Im(z), ENTER^,

Re(z)” – like on the HP-32/33S and other FOCAL programs -. With the 41Z module you can do it either

way, but it’s important to remember that regardless of how you introduce the numbers, all functions
expect the imaginary part in the Y real-stack register and the real part in the X real-stack register.

Fast data entry will typically use the sequence Im(z) , ENTER^, Re(z), followed by the complex

function. This is called the “Direct” data entry, as opposed to the “Natural” data entry, which would first
input the real part. The 41Z module includes the function “^IM/AG” that can be used to input the

number using the “Natural” convention (reversed from the Direct one).

Its usage is the same as the “i”-function on the HP-35s, to separate the real and the imaginary parts.

The sequence is completed by pressing ENTER^ or R/S, after which the imaginary part will be left in
the Y register and the real part in the X register as explained before.

(Incidentally, the 42S implementation of the complex stack isn’t suitable for a true 4-level, since the
COMPLEX function requires two levels prior to making the conversion!)

Other functions and special functionality in the 41Z module can be used as shortcuts to input purely

real or imaginary numbers more efficiently. For instance, to enter the imaginary unit one need only

press: 1, ZIMAG^ (which is also equivalent to executing the IMAGINE function) – or simply “ZL,

Radix, 1” using the “complex keypad”. And to enter 4 as a complex number, just press: 4, ZREAL^ -

or simply “ZL, 4” using the “complex keypad”.

Incidentally, the 42S implementation fails short from delivering a true 4-level stack, due to the
COMPLEX function and the fact that it requires two stack levels to be available to combine the complex

number. In this regard the 41Z solution is a better one.

 >

Two (opposite) alternatives to data entry: COMPLEX key on the 42S, and ” ï” key on the 35S

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 13 of 124

3. User interface enhancements.

Table-3.1: Functions to enhance the user interface.

Index Function Group Description

1 ZK?YN _ Usability Activates and deactivates the Complex Assignments

2 ZL _ Usability Accesses most of the 41Z functions plus special features

3 ZAVIEW _ _ Display Views complex number in X,Y (prompts for # decimal places)

4 POLAR Display Displays complex numbers in Polar form

5 RECT Display Displays complex numbers in Rectangular form

6 ^IM/AG _ Usability Inputs Imaginary Part (or Argument) of complex number

These functions facilitate the showing of the complex number on the display, and the conversion
between the polar and rectangular forms. They enhance the usability by supplying a system to handle

the lack of native complex number treatment capabilities of the calculator.

3.1 Display mode and conversion functions.

ZAVIEW _ __ _ Complex number AVIEW Uses ALPHA registers Prompts for # decimal places

Shows the contents of the complex stack level Z in the display, using the current complex display mode
(POLAR or RECT).:

RECT: Re(z) + J Im(z) ; where Re(z) is stored in register X and Im(z) in register Y.

POLAR: Mod(z) <| Arg(z); shown but not stored in the X,Y stack registers (!)

Note that ZAVIEW uses the ALPHA register, thus the previous contents of the M, N and O registers will

be lost.

The displaying will respect the current DEG, RAD, or GRAD angular mode (in POLAR form), the current

FIX, SCI or ENG settings. In RUN mode you have the choice to input the number of decimal places in
the function’s prompt – whilst in Program it’ll use the selected settings on the calculator. Note that “J”

precedes the imaginary part, as this improves legibility with real-life complex numbers, with decimal
imaginary parts.

For a enhanced visualization, ZAVIEW won’t show decimal zeros if the number is an integer. This is

done automatically regardless of the number of decimal places selected in the calculator; so one can

immediately tell whether the real or imaginary parts are true integers as opposed to having some
decimal content hidden in the least significant places not shown.

 versus:

ZAVIEW will also extract common factor if both the real and imaginary parts are equal:

 or also:

Executing the functions POLAR and RECT will also display the complex number currently stored in X,Y

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 14 of 124

POLAR Sets POLAR mode on Displays number Shows in SET mode

RECT Sets RECT mode on Displays number Shows in SET mode

ZPOL Convert to Polar Converts X,Y to POLAR Always shows in POLAR

ZREC Convert to Rectangular Converts X,Y to RECT Shows in SET mode

ZPOL Converts the complex number in the Z stack level from rectangular to polar mode. If executed in
run mode, the display shows the value of its magnitude (its module) and its argument, as follows:

 Mod  Arg ; where:

Mod = |z| and Arg= [z = |z|* e^i 

The argument value will be expressed in the angular settings currently selected: DEG, RAD, or GRAD.

 equals

 or also

ZREC is the reciprocal function, and will convert the complex number in Z (assumed to be in polar
form) to rectangular form, showing it on the display (in run mode) in identical manner as ZAVIEW.

In fact, if it weren’t because of the displaying capabilities, these two functions will be identical to the

pair R-P and P-R, standard on the calculator. Recognizing this, they’re assigned to the very same

position as their real counterparts on the Complex User keyboard.

Notice that contrary to the POLAR and RECT functions (which only display the values), ZPOL and
ZREC perform the actual conversion of the values and store them in the stack registers (complex and

real). This is also very useful to enter complex numbers directly in polar form, simply using the

sequence: (direct data entry: Angle first, then modulus):

- Arg(z), ENTER^, |z|, ZREC -> Re(z) + J Im(z)

3.2 Complex Natural Data Entry.

This function belongs to its own category, as an automated way to input a complex number using the
“Natural” data entry convention: Real part first, Imaginary part next. Its major advantage (besides

allowing the natural data entry sequence) is that it performs a complex stack lift upon completion of
the data entry, thus there’s no need to use ZENTER^ to input the complex number into the complex

stack. That alone would justify its inclusion on the 41Z module.

^IM/AG _ Inputs Im(z)/Arg(z) Part Does Stack Lift Prompting function

The function will prompt for the imaginary part (or the argument if in POLAR mode) of the complex
number being entered. The design mimics that on the HP-35S calculator, and it’s used as a way to

separate the two complex parts during the complex number data entering.

A few important considerations are:

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 15 of 124

• The real part (or module) must be introduced right before calling it, so it’s in X during the

data entry.

• The keyboard is redefined to allow for numeric digits, RADIX, CHS and EEX as only valid
keys.

• The radix symbol used (comma or dot) is controlled by the user flag 28.

• Only one RADIX character will be allowed in the mantissa – and none in the exponent.

• Only nine digits will be used for the mantissa, and two in the exponent. ^IM/AG will not

check for that during the input process, but exceeding entries will simply be ignored.

• Only one EEX can exist in the imaginary part - ^IM/AG will check for that.

• Only one CHS can be used for the mantissa sign, ^IM/AG will check for that.

• Multiple CHS can be used for the exponent sign, but ^IM/AG will apply the arithmetic

rules to determine the final sign as follows: odd number is negative, even number is
positive.

• Pressing Back Arrow will remove the last entry, be that a number, Radix, EEX or CHS. If

the entry is the first one it will cancel the process and will discard the real part as well.

• The sequence must be ended by pressing ENTER^ or R/S.

• The display cue is different depending on the actual complex mode (RECT or POLAR), and
it’s controlled automatically.

• Upon completion, the complex number is pushed into the Z complex stack level, and

placed on the X,Y real stack registers as well following the same 41Z convention: real part
in X and imaginary part in Y. The complex stack is lifted and the real stack is synchronized

accordingly.

The screens below show usage examples in RECT and POLAR modes:

 until finally:

 ending as:

Note: To extract the numeric value from the input string, ^IM/AG executes the same code as the X-
function ANUM. All conversion conventions will follow the same ANUM logic. Suffice it to say that the

implementation of ^IM/AG is not absolute perfect and you can trip it up if that’s what you really want

– but it should prevent likely errors that could yield incorrect results. It’s a very convenient way to
meet this need solving the diverse issues associated with its generic character.

If the input string doesn’t yield any sensible numeric result, the message “SYNTAX ERROR” is briefly

shown in the display, and the stack is restored to its status prior to executing ^IM/AG.

 will trigger:

Some apparently incorrect syntax constructions will however be properly interpreted by ^IM/AG,
returning a valid imaginary part. This is for instance the case with multiple negative signs in the

exponent, or decimal values after negative sign in the mantissa. Such is the flexibility of the ANUM
function!

Example: Vector Load addition (taken from the 35s User Guide):-

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 16 of 124

We start by setting POLAR and DEG modes, then using the ^IM/AG function three times will set the

three complex numbers on the complex stack, and finally simply execute the complex addition function
Z+ twice:

POLAR, DEG

185, ^IM/AG, 62, ENTER^
170, ^IM/AG, 143, R/S

100, ^IM/AG, 261, R/S

Z+, Z+

Result: -> 178,9372 <) 111,1489

Or in Rectangular mode (as it’s saved in
XY):

RECT -> -64,559 + J166,885

Note the following points:

• We used indistinctly ENTER^ and R/S to terminate the complex number entry.

• No need to store intermediate results as the complex buffer can hold up to four levels.

• We didn’t need to use ZENTER^ to push the complex numbers into the complex stack

because the stack-lift was performed by ^IM/AG.

With regard to the data entry sequence, one could have used ZREC instead of ^IM/AG – albeit in
that case it would have been in “direct mode”, as opposed to the more intuitive natural convention. It

also requires pressing ZENTER^ to push each number into the complex stack.

This is the keystroke sequence and partial results (assuming we’re in POLAR mode)

62, ENTER^, 185, ZREC, ZENTER^ -> 185 <)62

143, ENTER^, 170, ZREC, ZENTER^ -> 170 <)143
261, ENTER^, 100, ZREC -> 100 <)-99

Z+, Z+ -> 178,9372 <) 111,1489

One last remark about data displaying vs. data entry.- As it was explained before, ZPOL will

convert the complex number into Polar coordinates, and it will be displayed in POLAR form even if
RECT mode is selected. This is the single one exception all throughout the 41z module, and it will only

work immediately after pressing ZPOL but not for subsequent executions of ZAVIEW – which always
expects the number is stored in rectangular form, and therefore will show an incorrect expression.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 17 of 124

3.3 The Complex User Assignments.

The 41Z module provides a convenient way to do user key assignments in masse. Given the

parallelisms between the real and complex number functions, the natural choice for many of the
functions is “predetermined” to be that of their real counterparts.

A single function is used for the mass-assignment (or de-assignment) action:

ZK?YN _ Complex User Assignments Prompting function

ZK?YN automates the assignment and de-assignment of 37 functions. It prompts for a Yes/No answer,
as follows:

• Answering “Y” will assign the complex functions to their target keys

• Answering “N” will de-assign them, and

• Pressing “Back Arrow” will cancel the function – and display the Z-level content.

• Any other key input (including ON) will be ignored.

The assignment action will be indicated by the message “Z-KEYS: ON” or “Z-KEYS OFF” in the display
during the time it takes to perform, followed by “PACKING” – and possibly “TRY AGAIN” should the

enough number of memory registers not exist.

Note that ZK?YN is selective: any other key assignment not part of the complex functions set will not
be modified.

 Table 3.3. Complex key assignments done by ZK?YN

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 18 of 124

3.4 The Complex Keyboard.

As good as the user assignments are to effectively map out many of the 41Z functions, this method is

not free from inconveniences. Perhaps the biggest disadvantage of the Complex Assignments is that it’s
frequently required to toggle the user mode back and forth, depending on whether it’s a complex or a

real (native) function to be executed.

Besides that, the Complex Assignments consume a relative large number of memory registers that can

be needed for other purposes. Lastly, there are numerous 41Z functions not included on the user
assignments map, and no more “logical” keys are available without compromising the usability of the

calculator.

To solve these quibbles, the 41Z module provides an alternative method to access the majority of the

complex functions, plus some unique additional functionality. It’s called the Complex Keyboard,

accessed by the function ZL: a single key assignment unleashes the complete potential of the module,

used as a complex prefix, or in different combinations with the SHIFT key and with itself.

Figure 3.4. Complex Keyboard overlay (with ZL assigned to Sigma+).
On the left: the version for V41. On the right, for i41CX

 © 2009 M. Luján García.

The 41Z overlay can be downloaded from the HP-41 archive website, at:

 http://www.hp41.org/LibView.cfm?Command=View&ItemID=893

To use it with V41 emulator, replace the original file “large.bmp” in the V41 directory with the 41Z
bitmap file, after renaming it to the same file name.

http://www.hp41.org/LibView.cfm?Command=View&ItemID=893%20

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 19 of 124

Here’s how to access all the functions using ZL:

• Direct functions. Simply press “Z” as a prefix to denote that the next function will operate on

a complex argument, and not on a real one. These functions don’t have any special marks, as

they correspond to the standard functions on the HP-41 keyboard. There are twenty 41Z
functions directly accessible like these.

Examples: Pressing Z, LN will execute ZLN; pressing Z, COS will execute ZCOS, etc…

Pressing Z, + will execute Z+; pressing Z, R/S will execute ZAVIEW,

• Shifted functions. Press “Z” followed by the SHIFT key. These functions are either marked

in blue when different from the standard SHIFTED ones, or just marked in yellow as part of the
standard HP-41 keyboard (like x=y?, which will execute Z=W? if the pressed key sequence is

this: Z, SHIFT, x=y?

Examples: pressing Z, SHIFT, LN will execute ZEXP; pressing Z, SHIFT, SIN will execute ZASIN,

Pressing Z, SHIFT, R/S will execute ZVIEW (a prompting function itself).

There are thirty-one 41Z functions accessible using this SHIFTED method.

• Dual (alternate) functions. Press “Z” twice as a double prefix to access the dual complex

functions and many others. These functions are marked in red, on the right side of each

available key.

Examples: Pressing Z, Z, 7 will execute ZWDET; pressing Z, Z, 5 will execute ZWCROSS, , and so on

with all the “red-labeled” keys.

Pressing Z, Z, ENTER^ will execute ZREPL; pressing Z, Z, Z will execute Z<>U

There are twenty-five 41Z functions accessible using this Dual method.

• Multi-value functions. As a particular case of the dual functions case above, the ZNEXT

function group is enabled by pressing “Z” twice and then SHIFT. This group is encircled on the

keyboard overlay, and sets the five multi-value functions as follows: NXTASN, NXTACS,

NXTATN, NXTLN, and NXTNRT (this one will also prompt for the root order, as an integer
number 0-9).

Notice that pressing SHIFT while in the NEXT section toggles the display to “ZBSL”. Use it as a shortcut

to access the different Bessel functions of first and second kind provided in the 41, as follows: ZJBS,
ZIBS, ZKBS, and ZYBS. – as well as EIZ/IZ, a particular case of Spherical Hankel h1(0,z).

• Hyperbolic functions. Press “Z” followed by SHIFT twice to access the three direct
hyperbolics. Pressing SHIFT a third time will add the letter “A” to the function name and will

enable the inverse functions. This action toggles with each subsequent pressing of SHIFT.
(Watch the 41Z building up the function name in the display as you press the keys…)

Example: Pressing Z, SHIFT, SHIFT, SHIFT, SIN will execute ZASINH

• Complex Keypads. Press “Z” followed by a numeric key (0 to 9) to enter the corresponding
digit as a complex number in the complex stack. Pressing “Z” followed by the Radix key, and

then the numeric key will input the digit as an imaginary number as opposed to as a real
number into the complex stack. This is a very useful shortcut to quickly input integer real or

imaginary values for complex arithmetic or other operations (like multiplying by 2, etc.)

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 20 of 124

Pressing Z, XEQ calls the function ^IM/AG for the Natural Data entry. This is obviously not shown on

the keyboard – which has no changes to the key legends for un-shifted functions. Note that there are
three different ways to invoke ^IM/AG, as follows:

XEQ, ALPHA, SHIFT, N, I, M, /, A, G, ALPHA -> the standard HP-41 method, or:
Z, SHIFT, ENTER^ -> shown in blue in the overlay, or:

Z, XEQ -> not shown.

• Other keystrokes. The 41Z module takes control of the calculator keyboard when ZL is

executed. Available keys are determined by the partial key sequence entered, as defined on the
41Z Keys overlay and as explained above. Pressing USER or ALPHA will have no effect, and

pressing ON at any time will shut the calculator off. The back arrow key plays its usual
important role during data entering, and also undoes the last key pressed during a multi-shifted

key sequence. Try it by yourself and you’ll see it’s actually easier than giving examples on how

it works here.

In summary: a complete new keyboard that is accessed by the “Z” blue prefix key. This being the only

requisite, it’s a near-perfect compromise once you get used to it – but if you don’t like it you can use

the User Assignments , the choice is yours.

Quick Recap:

The figure below shows the main different modes of the ZL function, the real cornerstone of the 41Z

module:

SHIFT SHIFT SHIFT

Blue Functions Green Functions Shift Green Fns

RADIX RADIX

ZPAD for di rect entry

ZKBRD SHIFT SHIFT

Red Functions Circled Functions Shift Circled Fns

STO

ZSTO Math functions

Press the Back-arrow key to bring the command chain back to the starting point (ZL). Pressing it twice

shows “NULL” and cancels out the sequence.

Pressing non-relevant keys (i.e. those not supposed to be included in the corresponding mode) causes

the display to blink, and maintain the same prompt (no action taken).

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 21 of 124

4. Stack and Memory functions.

Let Z and W be the lower two levels of the complex stack, and “z” and “w” two complex numbers

stored in Z and W respectively. Z = Re(z)+ j Im(z); W = Re(w) + j Im(w)

Note the use of “j“ to express the imaginary unit, instead of “i“ . This isn’t done to favor those EE’s in

the audience (you know who we are), but rather due to the displaying limitations of the 41 display: no
lower-case letters for either i or j, and better-looking for the latter one in caps.

Note also that despite their being used interchangeably, the complex stack register “Z” – in bold font –

and the real stack register “Z” – in regular font – are not the same at all.

Table-4.1: Stack and memory function group.

Index Function Name Description

1 ZTRP Re(z)<>Im(z) Exchanges (transposes) Re and Im for number in level Z.

2 ZENTER^ Complex ENTER^ Enters X,Y into complex level Z, lifts complex stack.

3 ZREPL Complex Stack Fill Fills complex stack with value(s) in X,Y

4 ZRDN Complex Roll Down Rolls complex stack down

5 ZRUP Complex Roll Up Rolls complex stack up

6 ZREAL^ Inputs real Z Enters value in X as real-part only complex number

7 ZIMAG^ Inputs imaginary Z Enters value in X as imaginary complex number

8 Z<>W Complex Z<>W Swaps complex levels Z and W

9 (*) Z<>ST _ _ Complex Z<> level Swaps complex levels Z and any stack level (0-4)

10 (*) ZRCL _ _ Complex Recall Recalls complex number from memory to level Z

11 (*) ZSTO _ _ Complex Storage Stores complex number in Z into memory

12 (*) Z<> _ _ Complex Exchange Exchanges number in level Z and memory

13 (*) ZVIEW _ _ Complex Display Shows Complex number stored in memory register

14 CLZ Clears Level Z Deletes complex level Z

15 CLZST Clears Complex Stack Clears all complex levels U, V, W, and Z

16 ZREAL Extracts real part Removed. Replace with: X<>Y, CLX, X<>Y

17 ZIMAG Extracts Imag part Removed. Replace with: CLX

18 LASTZ Last number used Recovers the last complex number used

(*) Note: These functions are fully programmable. When used in a program their argument is taken
from the next program line, see below for details.

4.1 Stack and memory functions group.

Let’s start with the individual description of these functions in more detail, beginning with the simplest.

ZTRP Z Transpose Does Re <>Im

This function’s very modest goal is to exchange the real and imaginary parts of the complex number
stored in the Z level of the complex stack.

Hardly a worthwhile scope, you’d say, considering that the standard function X<>Y does the same

thing? Indeed it is quite similar (and as such it’s logically assigned to the shifted X<>Y key). But it’s not

quite the same, as in run mode ZTRP also shows on the display the complex number after transposing
their real and imaginary parts. Besides, as it was mentioned in the introduction, this function may play

an important role during data entry: it is the one to use when entering the real part first, as per the
following sequence: Re(z), ENTER^, Im(z), ZTRP

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 22 of 124

Thus its use is analogous to the “COMPLEX” function on the HP-42S, also required to enter the complex

number in the stack, from its two real components. Note that the other, alternative data entering
sequence doesn’t require using ZTRP, although the order of the real and imaginary parts is reversed

(and arguably less intuitive): Im(z), ENTER^, Re(z). Either one of these two is entirely adequate

once you become familiar with it and get used to using it - it’s your choice.

ZENTER^ Enters X,Y into levels Z, W Does Stack lift

ZRPL^ Fills complex stack

ZENTER^ enters the values in X,Y as a complex number in the Z stack level, and performs stack lift
(thus duplicates Z into W as well – and U is lost due to the complex stack spill-over). As said in the

introduction, always use ZENTER^ to perform stack lift when entering two (or more) complex
numbers into the complex stack. This is required for the correct operation of dual complex functions,

like Z+, or when doing chain calculations using the complex stack (which, unlike the real XYZT real
stack, it does NOT have an automated stack lift triggered by the introduction of a new real number).

ZRPL^ simply fills the complex stack with the values in the real registers X,Y. This is convenient in

chained calculations (like the Horner method for polynomial evaluation). If executed in run mode it also
displays the number in Z. This is in fact a common characteristic of all the functions in the 41Z

module, built so to provide visual feedback on the action performed.

ZREAL^ Enters X in Z as (x+j0) Does Stack Lift

ZIMAG^ Enters X in Z as (0+jX) Does Stack Lift

These functions enter the value in X either as a purely real or purely imaginary number in complex

form in the Z stack level, and perform stack lift. If executed in run mode it also displays the number in
Z upon completion.

CLZ Clears complex stack level Z

CLZST Clears complete complex stack

ZREAL Extracts Real part from Z Sub-function X<>Y, CLX, X<>Y

ZIMAG Extracts Imaginary part from Z Sub-function CLX

Use these four functions to partially or completely clear (delete) the contents of the complex stack Z

level, or the complete complex stack. No frills, no caveats. The real stack will also be cleared
appropriately. Note that contrary to the real CLX function, the execution of CLZ will save the complex

number in the complex LastX level “S”.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 23 of 124

Z<>ST _ Exchanges Z and Stack Level# = 0,1,2,3,4 Prompting function (*)

Z<>W Exchanges Z and W

(*) Fully programmable, see note in following pages.

Use these functions to swap the contents of the Z and U/V/W levels of the complex stack respectively.

As always, the execution ends with ZAVIEW in run mode, displaying the new contents of the Z

register.(which is also copied into the XY registers).

LASTZ Recalls last number used to Z Does Stack Lift

Similar to the LASTX function, LASTZ recalls the number used in the immediate preceding operation
back to the Z level of the complex stack. A complex stack lift is performed, pushing the contents of Z

up to the level W, and losing the previous content of U.

The majority of functions on the 41Z module perform an automated storage of their argument into the
LastZ register, enabling the subsequent using of LASTZ. This will be notated in this manual when

appropriate under each function description.

Example: to calculate [(z2 + z)/2] simply press: Z^2, LASTZ, Z+, ZHALF

Example: Calculate the following expression without using any data registers:

F(z) = Ln [z + SQR(z^2 + 1)], for z= 20+20i

Solution:

 2 , 0 , ENTER^ , ZRPL -> puts 20+20i in all 4 levels of the complex stack

 Z^2 , 1 , ZREAL^, Z+ -> could have used “1, +” as a more direct method

 ZSQRT , Z+ , ZLN -> 4,035+J0,785

Congratulations! You just calculated the hyperbolic arcsine of (20+20i).

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 24 of 124

ZRDN Rolls complex stack down

ZRUP Rolls complex stack up

Like their real stack counterparts, these functions will roll the complex stack down or up respectively. If
executed in run mode it also displays the number in Z. Real stack registers will be synchronized

accordingly.

Be aware that although ZRDN and ZRUP do not perform stack lift, they update the Z complex register
with the values present in X,Y upon the function execution. This behavior is common across all 41Z

functions.

ZVIEW _ _ Displays Complex Register value Prompting function

Z<> _ _ Exchanges Z and complex register Prompting function

Like its real counterparts, these functions view or exchange the content of the complex stack level Z

with that of the complex storage register given as its argument. Two standard storage registers are
used, as per the above description.

ZRCL _ _ Recall from Complex Register Does Stack lift Prompting function

ZSTO _ _ Store in Complex Register Prompting function

Like their real counterparts, these functions are used to Recall or store the complex number in Z from

or into the complex register which number is specified as the function’s argument. In fact two (real)
storage registers are used, one for the imaginary part and another for the real part. This means that

ZRnn corresponds to the real storage registers R2nn and R(2nn+1).

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 25 of 124

ZRCL will perform complex stack lift upon recalling the contents of the memory registers to the Z stack

level. Also note that, following the 41Z convention, ZSTO will overwrite the Z level with the contents of
X,Y if these were not the same. This allows walk-up complex data entering.

These functions are fully programmable. When in program mode (either running or SST execution),
the index input is taken from the following program line after the function. For this reason they are

sometimes called non-merged functions. In fact, the number denoting the argument can have any
combination of leading zeroes (like 001, 01, 1 all resulting in the same). Moreover, when the argument

is zero then such index line can be omitted if any non-numeric line follows the function. This saves

bytes and makes programs more legible.

The original implementation was written by W. Doug Wilder, and it was almost as powerful and
convenient as the one used by the HEPAX module for its own multi-function groups. I enhanced it

further with an automated parameter input feature: when entered into a program, the index input will
be added automatically in a second program line by the function.

Similar to the real counterparts, keys on the first two rows can be used as shortcut for indexes 1-10.

Note that indirect addressing is also supported (say ZRCL IND _ _) pressing the SHIFT key. Also
note that in the Deluxe edition of the 41Z, their logic fully supports the use of the complex stack

registers (i.e. ZRCL ZL _ followed by a Z-stack level: {U, V, W, Z, and S}) pressing the RADIX

key; as well as the combination of both indirect and stack addressing (i.e. ZRCL IND ST _ _
followed by a REAL stack / data register number) sequentially pressing the SHIFT and RADIX

keys. This extends the model of the native calculator functions to the complex data registers, where
obviously an indirect pointer is always a real number by definition.

For example:

,

Where the left prompt will only allow for one of the five compelx Z-Stack levels letters, and the right

prompt will allow for any of the 16 choices available as real stack (including the synthetic registers as
well - be careful with those!).

Note that as of revision “O” of the Library#4 module, in program mode the argument entered by the

function will be automatically entered in the second program step for the IND, ZL, and IND ST cases.
In fact the indirect addressing is nothing more that adding 128 to the address, (or 0x80 Hex) thus it is

handled by simply adding such factor to the index in the prompt line. Similarly, by adding 112 (or 0x70
Hex) for complex Z-stack levels, or the addition of both 0x80- and 0x70 (i.e. 240) for the IND ST

combination.

Lastly, a NONEXISTENT message will be shown if the storage register pointed at is not available in

main memory. Registers can be made available using the SIZE function of the calculator.

Note for advanced users: Pressing the EEX key will also activate the prompt-lengthener adding a third
field to the prompt. This is of limited usability since for Complex registers it would require setting a real

SIZE above 200 in the calculator.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 26 of 124

4.2. ZSTO/ZRCL Math function groups.

Function Name Comments

ZST+ _ _ Store Adding to ZReg Prompting function

ZST- _ _ Store subtracting from ZReg Prompting function

ZST* _ _ Store multiplying to ZReg Prompting function

ZST/_ _ Store Dividing by ZReg Prompting function

ZRC+ _ _ Add ZReg to Z Prompting function

ZRC- _ _ Subtract ZReg from Z Prompting function

ZRC* _ _ Multiply Z by ZReg Prompting function

ZRC/ _ _ Divide Z by ZReg Prompting function

One of the newest additions to the 41Z function set.- allow storage and recall math in a concise format,

saving bytes and programming steps in FOCAL programs. Their equivalence with standard functions

would have to be done using four steps, and disturbing the Complex Stack as follows:

1.- ZENTER^,
2.- Z<>(nn)

3.- MATH (Z+, Z-, Z*, Z/)

4.- Z<>(nn)

With the support of Z-stack registers and INDirection it is possible to use the same shortcuts and
conviniencies as there are available for the real case in the standard calculator. For example to multiply

a number by two you use ZST+, RADIX, “Z” :

Which expects a letter representing the complex stack. i.e. {Z, W, U, V}, and “S” for LastZ.

Complex Stack manipulation is now simply a matter of using Z<> _ _ with the corresponding Z-stack

level letter in the RADIX prompts. Not to be confused with the stack level# input required by the
function Z<>ST _ _, which only allows decimal values between 1-5 as valid entries. Similar but not the

same – in particular when if comes to INDirection.

These functions are fully programmable using the same non-merged technique described in the
previous page for the standard cases. Like them, the argument is automatically entered by the function

as a second program line. The same considerations apply for Z-Stack and indirect registers, which are

automagically entered in the non-merged program step.

The RCL/STO Math functions can be accessed directly from the ZRCL and ZSTO prompts by pressing
the corresponding arithmetic key. In fact, you can “navigate” you way about all the choices between

the three memory access functions ZRCL, ZSTO and Z<> as well as their arithmetic extensions

(excluding Z<>) simply by pressing any of the appropriate keys during the prompts of any of them.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 27 of 124

5. Complex Math.

Complex numbers are much more than a simple extension of the real numbers into two dimensions.

The Complex Plane is a mathematical domain with well-defined, own properties and singularities, and it
isn’t in the scope of this manual to treat all its fundamental properties. On occasions there will be a

short discussion for a few functions (notably the logarithms!), and some analogies will be made to their
geometric equivalences, but it is assumed throughout this manual that the user has a good

understanding of complex numbers and their properties.

5.1. Arithmetic and Simple Math.

Table-5.1:- Arithmetic functions.

Index Function Formula Description

1 Z+ Z=w+z Complex addition

2 Z- Z=w-z Complex subtraction

3 Z* Z=w*z Complex multiplication

4 Z/ Z=w/z Complex division

5a ZINV Z=1/z Complex inversion, direct formula

5b 1/Z Z=1/r e^(-iArg) Complex inversion, uses TOPOL

6 ZDBL z=2*z Sub-function. Can be replaced with: 2, ST* Z, *

7 ZHALF z= z/2 Sub-function. Can be replaced with: 2. ST/ Z, /

8 ZRND Z=rounded(z) Rounds Z to display settings precision

9 ZINT Z=Int(z) Takes integer part for Re(z) and Im(z)

10 ZFRC Z=Frc(z) Takes fractional part for Re(z) and Im(z)

11 ZPI* Z=z Simple multiplication by pi

Here’s a description of the individual functions within this group.

Z+ Complex addition Z=w+z Does LastZ

Z- Complex subtraction Z=w-z Does LastZ

Z* Complex multiplication Z=w*z Does LastZ

Z/ Complex division Z=w/z Does LastZ

Complex arithmetic using the RPN scheme, with the first number stored in the W stack level and the

second in the Z stack level. The result is stored in the Z level, the complex stack drops (duplicating U

into V), and the previous contents of Z is saved in the LastZ register.

ZINV Direct Complex inversion Z=1/z Does LastZ

1/Z Uses POLAR conversion Z=1/r e^(-iArg) Does LastZ

Calculates the reciprocal of the complex number stored in Z. The result is saved in Z and the original

argument saved in the LastZ register. Of these two the direct method is faster and of comparable
accuracy – thus it’s the preferred one, as well as the one used as subroutine for other functions.

This function would be equivalent to a particular case of Z/, where w=1+0j, and not using the stack

level W. Note however that Z/ implementation is not based on the ZINV algorithm [that is, making
use of the fact that : w/z = w * (1/z)], but based directly on the real and imaginary parts of both

arguments.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 28 of 124

Example. Calculate z/z using ZINV for z=i

We’ll use the direct data entry, starting w/ the imaginary part:

1, ENTER^, 0, ZINV -> 0-j1
LASTZ -> 0+j1

Z* -> 1+j0

Note that integer numbers are displayed without decimal zeroes, simplifying the visual display of the

complex numbers.

ZDBL Doubles Z Z=2*z Does LastZ

ZHALF Halves Z Z=z/2 Does LastZ

These two sub-functions are provided to save stack level usage and programming efficiency. The same
result can also be accomplished using their generic forms (like Z* and Z/, with w=2+0j), but the

shortcuts are faster and simpler to use.

Example. Taken from the HP-41 Advantage manual, page 97.

Calculate: z1/(z2+z3); for: z1=(23+13i); z2=(-2+i), and z3=(4-3i)

If the complex stack were limited to 2 levels deep, we would need to calculate the inverse of the

denominator and multiply it by the numerator, but using the 4-level deep complex stack there’s no
need to resort to that workaround. We can do as follows:

13, ENTER, 23, ZENTER^ -> 23+j13

1, ENTER^, 2, CHS, ZENTER^ -> -2+j1

3, CHS, ENTER^, 4, Z+ -> 2(1-j)
Z/ -> 2,500+j9

Note that 41Z automatically takes common factor when appropriate, and that integer numbers are

displayed without decimal zeroes to simplify the visuals display of the complex numbers. Non-integers

are displayed using the current decimal settings, but of course full precision (that is 9 decimal places) is
always used for the calculations (except in the rounding functions).

ZRND Rounds Complex number Z=Rounded(z) Does LastZ

ZINT Takes integer parts Z=Int[Re(z)+jInt[Im(z) Does LastZ

ZFRC Takes Fractional parts Z=Frc[Re(z)+jFrc[Im(z) Does LastZ

These functions will round, take integer part or fractional part both the real and imaginary parts of the

complex number in Z. The rounding is done according to the current decimal places specified by the

display settings.

ZPI* Multiplies by pi Z= *z Does LastZ

Simple multiplication by pi, used as a shortcut in the Bessel FOCAL programs. Has better accuracy than

the FOCAL method, as it used internal 13-digit math.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 29 of 124

5.2. Exponential and powers that be.

Table-5.2: Exponential group.

Index Function Formula Description

1a ZEXP Z=REC(e^x, y) Complex exponential (method one)

1b E^Z See below Complex Exponential (method two)

2 Z^2 Z=REC(r^2, 2) Complex square

3a ZSQRT Algebraic Formula Principal value of complex square root

3b SQRTZ Z=REC(r^1/2, /2) Principal value of complex square root

4 W^Z Z=e^z*Ln(w) Complex to complex Power

5 W^1/Z Z=e^1/z*Ln(w) Complex to reciprocal complex Power

6 X^Z Z=e^z*Ln(x) Real to complex power

7 X^1/Z Z=e^z*Ln(x) Real to reciprocal complex power

8 Z^X Z=e^x*Ln(z) Complex to real Power

9 Z^1/X Z=e^1/x*Ln(z) Complex to reciprocal real Power

10 ZALOG Z=e^z*Ln(10) Complex decimal power

11 NXTRTN Z=z*e^j 2 /N Next value of complex nth. Root

Looking at the above formula table it’s easy to realize the importance of the exponential and
logarithmic functions, as they are used to derive many of the other functions in the 41Z module. It is

therefore important to define them properly and implement them in an efficient way.

The 41Z module includes two different ways to calculate the complex exponential function. The first

one is based on the trigonometric expressions, and the second one uses the built-in polar to
rectangular routines, which have enough precision in the majority of practical cases. The first method is

slightly more precise but takes longer computation time.

ZEXP Complex Exponential Z=REC(e^x, y) Does LastZ

E^Z Complex Exponential Trigonometric Does LastZ

One could have used the rectangular expressions to calculate the result, as follows:

e^z = e^x * (cos y + i sin y), thus: Re(z) = e^(x) * cos y ; and: Im(z) = e^(x) * sin y

and this is how the sub-function E^Z has been programmed. It is however more efficient (albeit

slightly less precise) to work in polar form, as follows:

since z= x+iy, then e^z = e^(x+iy) = e^x * e^iy,

and to calculate the final result we only need to convert the above number to rectangular form.

Example.- Calculate exp(z-2), for z=(1+i)

1, ENTER^, ZENTER^ -> 1(1+j)

2, CHS, Z^X -> 0 – j 0,500
ZEXP -> 0,878 – j 0,479

Another method using W^Z and the complex keypad function (ZREAL^):

1, ENTER^, ZENTER^ -> 1(1+j)
2, CHS, ZREAL^ -> -2 + j 0

W^Z, ZEXP -> 0,878 – j 0,479

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 30 of 124

or alternatively, this shorter and more efficient way: (leaves W undisturbed)

1, ENTER^, Z^2, ZINV, ZEXP -> 0,878 – j 0,479

Note how this last method doesn’t require using ZENTER^ to terminate the data input sequence, as
the execution of monadic functions will automatically synchronize the complex stack level Z with the

contents of the real X,Y registers.

Z^2 Complex square Z=REC(r^2, 2) Does LastZ

ZSQRT Complex square root Algebraic Formula Does LastZ

SQRTZ Complex square root Z=REC(r^1/2, /2) Does LastZ

Two particular cases also where working in polar form yields more effective handling. Consider that:

Z^2 = |z|^2 * e^2i, and:

Sqrt(z) = z^1/2 = Sqrt(|z|) * e^i, where =Arg(z),

It is then simpler first converting the complex number to its polar form, and then apply the individual

operations upon its constituents, followed by a final conversion back to the rectangular form.

Note that this implementation of ZSQRT only offers one of the two existing values for the square root

of a given complex number. The other value is easily obtained as its opposite, thus the sum of both
square roots is always zero.

Such isn’t exclusive to complex arguments, for the same occurs in the real domain – where there are

always 2 values, x1 and –x1, that satisfy the equation SQRT[(x1)^2].

As with other multi-valued functions, the returned value is called the principal value of the function. See

section 6 ahead for a more extensive treatment of this problem.

W^Z Complex to complex Power Z=e^[z*Ln(w)] Does LastZ

W^1/Z Complex to reciprocal Power Z=e^[Ln(w)/z] Does LastZ

The most generic form of all power functions, calculated using the expressions:

w^z = exp[z*Ln(w)], and
w^1/z = exp[Ln(w) / z]

The second function is a more convenient way to handle the reciprocal power, but it’s obviously
identical to the combination ZINV, W^Z.

Example: calculate the inverse of the complex number 1+2i using W^Z:- Then obtain its reciprocal

using ZINV to verify the calculations.

2, ENTER^, 1, ZENTER^ number stored in level W (also as: 1, ENTER^, 2, ZTRP)
0, ENTER^, -1 exponent –1 stored in level Z (also as: -1, ENTER^, 0, ZTRP)

W^Z result: 0,200 – j 0,400
ZINV result: 1,000 + j 2

Note that the final result isn’t exact – as the decimal zeroes in the real part indicate there’s a loss of
precision in the calculations.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 31 of 124

Z^X Complex to real power Z=e^[x*Ln(z)] Does LastZ

Z^1/X Complex to reciprocal real Z=e^[Ln(z)/x] Does LastZ

X^Z Real to complex power Z=e^[z*Ln(x)] Does LastZ

X^1/Z Real to reciprocal complex Z=e^[1/z*Ln(x)] Does LastZ

ZALOG 10 to complex power Z=e^[z*Ln(10)] Does LastZ

These five functions are calculated as particular examples of the generic case W^Z. Their advantage is

a faster data entry (not requiring inputting the zero value) and a better accuracy in the results

Z^1/X is identical to: 1/X, Z^X
X^1/Z is identical to: RDN, ZINV, R^, X^Z

Data entry is different for hybrid functions, with mixed complex and real arguments. As a rule, the
second argument is stored into its corresponding stack register, as follows:

• x into the real stack register X for Z^X and Z^1/X

• z into the complex stack register Z for X^Z and X^1/Z

The first argument needs to be input first, since this is an RPN implementation.

Because ZALOG is a monadic function, it expects z in the stack level Z, and thus it doesn’t disturb the

complex stack.

Example: Calculate (1+2i)^3 and 3^(1+2i)

2, ENTER^, 1, ZENTER^, 3, Z^X results: (1+2i)^3 = -11 – j 2
2, ENTER^, 1, ZENTER^, 3, X^Z results: 3^(1+2i) = -1,759 + j 2,430

Example: Verify the powers of the imaginary unit, as per the picture below.- You can use either Z^X,

with z=(0+i) and x=1,2,3,4,5; or alternatively W^Z, with w=(0+i) and z=(1+0i), (2+0i), (3+0i), etc.

This keystroke sequence will quickly address the even powers:

0, ENTER^, 1, ZTRP -> 0 + j1 i
Z^2 -> -1 + j0 i2 = -1

Z^2 -> 1 + J0 i4 = 1

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 32 of 124

Whilst this will take care of the rest (and also in general):

0, ENTER^, 1, ZTRP -> 0 + j1 i

3, Z^X -> 0 - j1 i3 = -i

LASTZ -> 0 + j1
5, Z^X -> 0 + j1 i5 = i

Note in this example that for enhanced usability Z^X stores the original argument in the LastZ register,

even though it wasn’t strictly located in the Z level of the complex stack. The same behavior is

implemented in X^Z.

Alternatively, using W^Z and ZREPL:

1, ENTER^, 0, ZREPL -> 0 + j1 i
0, ENTER^, 2, W^Z -> -1 + j0 i2 = -1

ZRDN -> 0 + j1 i

0, ENTER^, 3, W^Z -> 0 - j1 i3 = -i
ZRDN -> 0 + j1 i

0, ENTER^, 4, W^Z -> 1 + j0 i4 = 1
ZRDN -> 0 + j1 i

0, ENTER^, 5, W^Z -> 0 + j1 i5 = i

Examples.- Calculate the value of: z = 2^1/(1+i); and z=(1+i)^1/2

These two have a very similar key sequence, but they have different meaning:

Solution: 1, ENTER^, ENTER^, 2, X^1/Z -> 1,330 – J0,480

Solution: 1, ENTER^, ENTER^, 2, Z^1/X -> 1,099 + j0,455

NXTNRT Next value of Nth. Root Z=z0*e^j 2 /N z0 is the principal value

In its general form, the solution to the Nth. Root in the complex plane admits multiple solutions. This is

because of its logarithmic nature, since the logarithm is a multi-valued function (see discussion in next
section).

Z^1/N = e^[Ln(z)/N] = e^[Ln(|z|)+i(+2)]/N = e^[Ln(|z|)+i]/N * e^j 2/N

From this we derive the general expression: Next(z^1/N) = z^1/N * e^(j 2  /N)

thus there are N different Nth. Roots, all separated by (2 over N). See the geometric interpretation on

section 7 ahead for further discussion on this.

When executed in a program or RUN mode, data entry for this function expects N in the X register, and

z in the Z complex stack level. However when the Complex Keyboard shortcut is used, the index N is
prompted as part of the entry sequence – a much more convenient way.

 Shortcut: Z, Z, SHIFT, SQRT

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 33 of 124

Example:- Calculate the two square roots of 1.

0, ENTER^, 1, ZENTER^, 2, Z^1/X -> 1 + j 0

2, NXTNRT (plus ZRND) -> -1 + j 0

Note that the previous root is temporarily stored in the LastZ register:

LASTZ -> 1 + j 0 (previous root)

See section 9 for a general application program to calculate the n different Nth. Roots of a complex

number

Example.- Calculate the three cubic roots of 8.

Using “direct” data entering: [Im(z), ENTER^, Re(z)]

0, ENTER^, 8, ZENTER^, 3, Z^1/X -> 2 + j 0
NXTNRT _ 3 -> -1,000 + j 1,732

NXTNRT_ 3 -> -1,000 – j 1,732

Note: for this example use the Complex Keyboard ZL to execute NXTNRT, as follows:

Z, Z, SHIFT, SQRT, and then input 3 at the last prompt.

Example: Calculate both quadratic roots of 1 + 2i.

2, ENTER^, 1, ZSQRT gives the first root: z= 1,272 + j 0,786
NXTNRT_ 2 gives the second root: z=-1,272 – j 0,786

NXTNRT_ 2 reverts to the first, principal value, of the root.

This verifies that both roots are in fact on the same straight line, separated 180 degrees from each

other and with the same module.

Example: Calculate the three cubic roots of 1 + 2i.

2, ENTER^, 1, ZENTER^ inputs z in the complex stack level Z

3, 1/X, Z^X gives the main root: z= 1,220 + j 0,472

NXTNRT_ 3 gives the second root: z=-1,018 + j 0,82
NXTNRT_ 3 give the third and last: z=-0,201 – j 1,292

In the next section we’ll discuss the logarithm in the complex plane, a very insightful and indeed

interesting case study of the multi-valued functions.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 34 of 124

5.3. Complex Logarithm.

Table-x: Logarithm group.

Index Function Formula Description

1 ZLN Z=Ln|z|+i Principal value of natural logarithm

2 ZLOG Z=Ln(z)/Ln10 Principal value of decimal logarithm

3 ZWLOG Z=Ln(z)/Ln(w) Base-w logarithm of z

4 NXTLN Z=z+2 j Next value of natural logarithm

The first thing to say is that a rigorous definition of the logarithm in the complex plane requires that its

domain be restricted, for if we defined it valid in all the plane, such function wouldn’t be continuous,
and thus neither holomorfic (or expressible as series of power functions).

This can be seen intuitively if we consider that:

Since: z = |z|*e^i, then:

Ln z = Ln |z| + Ln (e^i) = Ln(|z|) + i

But also

 z = |z|*e^i (+2) = |z|*e^i ( +4)=…. = |z|*e^i ( +2 n)

Then we’d equally have multiple values of its logarithm, as follows:

Ln(z) = Ln(|z|) + i = Ln(|z|)+i (+2) = …. Or generally:

Ln z = Ln|z|+i (+2 n); where n is a natural number.

To deal with this multi-valued nature of the function, mathematicians define the different branches of

the complex logarithm, - log − as the single one and only logarithm which argument is comprised

between ( -) and ( +), thus within the open interval]  -, + [

 Its domain isn’t the whole complex plane,

but it excludes a semi-straight line, centered

at the origin, that forms an angle  with the

real axis, as shown in the picture. Such set is

called the “torn” or cut complex plane at
angle ”. Thus the principal value of the

logarithm really should be called Log0, as it

tears (or cuts) the complex plane by the real

negative semi-axis, or otherwise  =0. This

means it is NOT defined for any negative
numbers, and when those need to be subject

of its application, a different cut should be
chosen.

Therefore all arguments should be comprised
between 180 and –180 degrees, as it would

correspond to this definition of “Log0”.

In practicality, the values calculated by ZLN

always lie within this interval, since they use
the internal routines of the calculator,

[TOPOL] and [TOREC].

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 35 of 124

The angle  should not be confused with the base of the logarithm, which is always the number e –

that is, there are natural logarithms. (See http://en.wikipedia.org/wiki/Branch_point for a more rigorous

description of this subject).

After this theoretical discussion, let’s see the functions from the 41Z module:-

ZLN Natural logarithm Z=Ln|z|+i Does LastZ

Calculates the principal value of the natural logarithm, using the expression:

Ln z = Ln|z| + i., where  = Arg(z) belongs to]-, ]

Example: check that: z=Ln(e^z), for z=(1+i) and z=(2+4i)

1, ENTER^, ZEXP, ZLN -> 1,000 + j 1,000

4, ENTER^, 2, ZEXP, ZLN -> 2 – j 2,283

How do you explain the last result? Is it correct? Try executing NXTLN (see below) on it…

NXTLN -> 2 + j 4,000 - that’s more like it!

ZLOG Decimal logarithm Z=Ln(z)/Ln10 Does LastZ

Calculates the principal value of the decimal logarithm using the expression:

Log z = Ln z / Ln(10)

Example: check that: z=Log(10^z), for z=(1+i) and z=(2+4i)

1, ENTER^, ZALOG, ZLOG -> 1(1+j)

4, ENTER^, 2, ZALOG, ZLOG -> 2 + j 1,271

How do you explain the last result? Is it correct? Have you found a bug on the 41Z?

ZWLOG Base-W Logarithm Z=Ln(z)/Ln(w) Does LastZ

General case of ZLOG, which has w=10. This is a dual function,

Log z = Ln z / Ln w

NXTLN Next Natural logarithm Z=z0+2 j z0 is the principal value

Calculates the next value of the natural logarithm, using the expression:

Next(Ln z) = Ln(z) + 2 j

So the different logarithms are “separated” a distance of value 2 in their imaginary parts. This works

both “going up” as well as “going down”, thus each time NXTLN is executed two values are calculated
and placed in complex levels Z and W. You can use Z<>W to see them both.

http://en.wikipedia.org/wiki/Branch_point

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 36 of 124

6. Complex Geometry.

The next set of functions admits a geometrical interpretation for their results. Perhaps one of the

earliest ways to approach the complex numbers was with the analogy where the real and imaginary
parts are equivalent to the two coordinates in a geometric plane.

Table-6.1: Complex geometric group.

Index Function Formula Description

1 ZMOD |z|=SQR(x^2+y^2) Module or magnitude of a complex number

2 ZARG =ATAN(y/x) Phase or angle of a complex number

3a ZNEG Z=-z Opposite of a complex number

3b ZCHSX Z=(-1)^x * z Opposite (by X) of a complex number

4 ZCONJ Z=x-y j Conjugated of a complex number

5 ZSIGN Z=z/|z| Sign of a complex number

6 ZNORM Z=|z|^2 Norm of a complex number

7 Z*I Z=z*i Rotates z 90 degrees counter clockwise

8 Z/I Z=z/i Rotates z 90 degrees clockwise

In fact, various complex operations admit a geometrical interpretation. An excellent reference source
for this can be found at the following URL: http://www.clarku.edu/~djoyce/complex.

Let’s see the functions in detail.

ZMOD Module of z |z|=SQR(x^2+y^2) Does LastZ

ZARG Argument of z =ATAN(y/x) Does LastZ

This pair of functions calculates the module (or magnitude) and the argument (or angle) of a complex

number, given by the well-known expressions:

|z| = SQR(x2 + y2)
  = ATAN(y/x)

Since they use the internal [TOPOL] routine (like R-P does), the argument will always be given between

180 and –180 degrees (or equivalent in the selected angular mode).

The result is saved in the complex Z register, and the real X,Y stack levels – as a complex number with

zero imaginary part. The original complex number is stored in the LastZ register. The other complex
stack levels W, V, U aren’t disturbed.

These functions display a meaningful description when used in run mode, as can be seen in the

pictures below, for z= 5+4 j and RAD mode.

http://www.clarku.edu/~djoyce/complex.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 37 of 124

ZNORM Norm of z ||Z||=|z|^2 Does LastZ

This function calculates the norm of a complex number, also known as the square of its module”

||z|| = |z|2 ; thus: Znorm = x2 + y2

When executed in run mode, the display shows a meaningful representation for it, like in the example

below, also for z = 4 + 5 j :

ZSIGN Module of z Z=z/|z| Does LastZ

This function calculates the sign of a complex number. As an extension to the SIGN function for the

real domain, it is a complex number with magnitude of one (i.e. located on the unit circle), that

indicates the direction of the given original number. Thus obviously: Zsign = z / |z|

The figure above shows the unit circle and the relative position in the complex plane for the opposite (-
z), conjugate (zc), and opposite conjugate (-zc) of a given number z.

Note that the inverse of z (1/z) will be located inside of the unit circle, and over the direction defined by

the negative of its argument [-Arg(z)]

Note that if z happens to be a cubic root of another number (i.e. z3), then the other two roots (z2 and
z3) will have the same module and be located at 120 degrees from each other, on the red circle line.

Z

-Z

Zsign

-Z Z

Z2

Z3

1/Z
1-1

-i

i

x=-Re(z) x=Re(z)

y=Im(z)

y=-Im(z)



−

Z

-Z

Zsign

-Z Z

Z2

Z3

1/Z
1-1

-i

i

x=-Re(z) x=Re(z)

y=Im(z)

y=-Im(z)



−

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 38 of 124

ZNEG Opposite of z Z=-z Does LastZ

ZCHSX Opposite of z by X Z=(-1)^x * z Does LastZ

ZCONJ Conjugate of z Z=x-y j Does LastZ

This pair of functions calculate the opposite- or the multiple-opposite by (-1)^x – and the conjugate of

a complex number z=x+y i, as follows:

-z = -x –y I, and z* = x – y I

See the figure below for the geometric interpretation of ZNEG and multiplication by real numbers:

Z*I Multiply by i Z=z*i Rotates z 90 deg ccw

Z/I Divide by i Z=z/i Rotates z 90 deg cw

The main role of these two functions is as subroutines for the trigonometric set, and they are also

provided for completion sake. Their geometric interpretation is a 90 degrees rotation of the complex
number either clockwise or counter-clockwise respectively.

These functions are used as subroutines for several others, like the direct and inverse trigonometric.
The dependencies between hyperbolic and trigonometric ultimately involves multiplication by i, which is

really a matter of swapping the real and imaginary parts, with the appropriate sign change in each
case.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 39 of 124

6.2 Complex Comparisons.

The 41Z module includes a comprehensive set of comparison checks, based on the complex numbers
themselves and their modules (for relative position in the complex plane). Checks for purely real or

imaginary cases are also provided. The main utilization for these functions is in program mode, as
conditional decisions under program control based on the different values.

Table 6.2. Complex comparisons function group.

Index Function Formula Description

1 Z=0? Is z=0? Checks if z is zero

2 Z#0? Is z#0? Checks if z is not zero

3 Z=I? Is z=i? Checks if z is the imaginary unit

4 Z=W? Is z=w? Checks if z and w are the same

5 Z=WR? Is z=w rounded? Checks if rounded z and rounded w are the same

6 Z#W? Is z#w? Checks if z and w are different

7 ZUNIT? Is |z|=1? Checks if z is on the unit circle

8 ZIN? Is |z|<1? Checks whether z is inside the unit circle

9 ZOUT? Is |z|>1? Checks whether z is outside the unit circle

10 ZREAL? Is z a real number? Checks whether Im(z)=0

11 ZIMAG? Is z true imaginary? Checks whether Re(z)=0

12 ZINT? Is z true integer? Checks whether Im(z)=0 and FRC[Re(z)]=0

13 ZGSS? Is z Gaussian? Checks whether Re(z) and Im(z) are both integers

14 ZQUAD Shows Quad# msg. Sets corresponding User Flag, clears others.

It’s well know that, contrary to real numbers, the complex plane isn’t an ordered domain. Thus we can’t

establish ordered relationships between two complex numbers like they are done with real ones (like

x>y, x<y?, etc.).

There are however a few important cases that can also be used with complex numbers, as defined by
the following functions.- As it is standard, they respond to the “do if true” logic, skipping the next

program line when false.

Z=W? Compares z with w Are they equal?

Z#W? Compares z with w Are they different?

Z=WR? Compares z with w rounded Are they equal?

Z=0? Compares z with zero Are they equal?

Z#0? Compares z with zero Are they different?

Z=I? Compares z with i Are they equal?

The first two functions compare the contents of the Z and W stack levels, checking for equal values of

both the real and imaginary parts.

z=w iff Re(z)=Re(w) and Im(z)=Im(w)

The third function, Z=WR? Will establish the comparison on the rounded values of the four real
numbers, according to the current display settings on the calculator (i.e. number of decimal places
shown). This is useful when programming iterative calculations involving conditional decisions.

Rnd(z) = Rnd(w) iff abs[Re(z)]=abs[Re(w)] and: abs(Im(z)] = abs[Im(w)]

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 40 of 124

The remaining three functions on the table are particular applications of the general cases, checking

whether the Z complex stack level contains zero or the imaginary unit:

z=0 iff Re(z)=0 and Im(z)=0
z=i iff Re(z)=0 and Im(z)=1

Some of the inverse comparisons can be made by using standard functions, as follows:

- use X#0? To check for Z#0? Condition

- Use X#0? To check for Z#I? Condition

ZUNIT? Checks if z is on the unit circle |z|=1?

ZIN? Checks if |z|<1 |z|<1? Sub-function

ZOUT? Checks if |z|>1 |z|>1?

These three functions base the comparison on the actual location of the complex number referred to

the unit circle: inside of it, on it, or outside of it. The comparison is done using the number’s modulus,

as a measure of the distance between the number and the origin.

Example: For z=4+5j , calculate its sign and verify that it’s located on the unit circle:

5, ENTER^, 4, ZSIGN, → result: Zsign = 0,625 + j 0,781

ZUNIT? → result: “YES”

DEG, POLAR → result: 1,00 < 51,34 (in degrees)

In program mode the behavior is ruled by the “do if true” rule, skipping the next line if false.

ZQUAD Returns Quadrant# for z Sets flag 1-2-3-4 Shows message

A new function to display the quadrant number (1 to 4) and set the user flag matching its value.

 the message goes away in a few instants.

Unit CircleUnit Circle

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 41 of 124

ZREAL? Checks if z is purely real Im(z)=0?

ZIMAG? Checks if z is purely imaginary Re(z)=0?

ZINT? Checks if z is an integer Im(z)=0, Re(z) integer

ZGSS? Checks if z is Gaussian Both Re(z) and Im(z) integers

The first two functions check whether the complex number is purely a real or imaginary number.

Do not mistake these comparison functions with the other pair, {ZREAL and ZIMAG}, which cause the

number to change to become either real or imaginary – nor with {ZREAL^ and ZIMAG^}, which are
used to input complex numbers of the selected type based on the value stored in the real stack level X.

The third one extends the scope of ZREAL?, adding the condition of being a true integer number:

- ZINT? True means ZREAL? True, and FRC(Re(z))=0

Do not mistake it with ZINT, which causes the complex number to have no decimal figures in BOTH its

real and imaginary parts – therefore it’s result not a Real number!

ZINT? Is used in the FOCAL programs to calculate Bessel Function, as a quick an effective way to

determine if the order is integer – which triggers different expressions for the formulas.

Like it occurs with any built-in comparison function, there’s no action taken on the original number,

which will remain unchanged.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 42 of 124

7. Complex Trigonometry.

Table 7.1. Complex trigonometry function group.

Index Function Formula Description

1 ZSIN sin z = -i *sinh (iz) Complex Sine

2 ZCOS cos z = cosh (iz) Complex Cosine

3 ZTAN tan z = - i * tanh (iz) Complex Tangent

4 ZHSIN sinh z = 1/2 * [e^z – e^-z] Complex Hyperbolic Sine

5 ZHCOS cosh z = 1/2 * [e^z + e^-z] Complex Hyperbolic Cosine

6 ZHTAN tanh z = (e^z-e^-z)/(e^z+e^-z) Complex Hyperbolic Tangent

And their inverses:
7 ZASIN asin z = -i * asinh (iz) Complex Inverse Sine

8 ZACOS acos z = /2 – asin z Complex inverse Cosine

9 ZATAN atan z = -i * atanh (iz) Complex Inverse Tangent

10 ZHASIN asinh z = Ln[z + SQ(z^2 + 1)] Complex Inverse Hyperbolic Sine

11 ZHACOS acosh z = Ln[z + SQ(z^2 – 1)] Complex Inverse Hyperbolic Cosine

12 ZHATAN atanh z = 1/2 * Ln[(1+z)/(1-z)] Complex Inverse Hyperbolic Tangent

This section covers all the trigonometric and hyperbolic functions, providing the 41Z with a complete

function set. In fact, their formulas would suggest that despite their distinct grouping, they are nothing

more than particular examples of logarithm and exponential functions (kind of “logarithms in disguise”).

Their usage is simple: the argument is taken from the complex-Z level and always saved on the LastZ
register. The result is placed on the complex-Z level. Levels W, V, U are preserved in all cases,

including the more involved calculations with ZTAN and ZATAN (those with the devilish names), for

which extensive use of scratch and temporary internal registers is made.

The formulas used in the 41Z are:

sin z = -i *sinh (iz) sinh z = 1/2 * [ez – e-z]
cos z = cosh (iz) cosh z = 1/2 * [ez + e-z]
tan z = - i * tanh (iz) tanh z = (ez – e-z)/(ez + e-z)

asin z = -i * asinh (iz) asinh z = Ln[z + SQ(z2 + 1)]
acos z =  /2 – asin z acosh z = Ln[z + SQ(z2 – 1)]

atan z = -i * atanh (iz) atanh z = 1/2 * Ln[(1+z)/(1-z)]

So we see that interestingly enough, the hyperbolic functions are used as the primary ones, also when

the standard trigonometric functions are required. This could have also been done the other way

around, with no particular reason why the actual implementation was chosen.

Example. Because of their logarithmic nature, also the inverse trigonometric and hyperbolic functions

will be multi-valued. Write a routine to calculate all the multiple values of ASIN z.

01 LBL “ZASIN” 08 ZRCL 00 15 ZAVIEW
02 ZASIN 09 ZNEG 16 PSE
03 ZSTO 00 10 ZSTO 00 17 E
04 ZAVIEW 11 RCL 02 18 ST+ 02
05 E 12 PI 19 GTO 00
06 STO 02 13 * 20 END
07 LBL 00 14 +

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 43 of 124

The 41Z module includes functions to calculate next values for complex ASIN, ACOS and ATAN, as

follows: NXTASN, NXTACS, and NXTATN. Using the first one the program above changes to this very
simplified way:

01 LBL “ZASIN2” 04 ZAVIEW 07 END
02 ZASIN 05 NXTASN

03 LBL 00 06 GTO 00

The key map is shown in the figure on the right, and can be
accessed using:

• [Z], [SHIFT] for the direct ones, and

• [Z], [SHIFT], [SHIFT] for the inverses.

Using the general expressions we can obtain the multiple values of a given function from its principal

value “Z” of a given function, as follows:

- the multiple values for ASIN(z) -in green squares- are placed on the two straight lines parallel

to the x axis, y=Im[ASIN(z)] and y=–Im[ASIN(z)], and are separated at intervals of 2 length

on each line.

Z

-z+

z+2 z+4

-z+3 -z+7-z+5

z-4 z-2

Z+2 j

Z-4 j

Z-2 j

-z-

ArcSin

-Z

Zsign

-Z Z-z+2 -z+4 -z+6

z-3 z- z+ z+3

Z-6 j

Z-8 j

Z2

Z3

ArcTan

ArcCos

Ln

z-6 z-5

1/Z

Ln(k)=Ln + 2k J

asin(k)=(-1)^k * asin + k

acos(k)=+/- acos +2k

atan(k) = atan +k

1-1

-i

i

Z

-z+

z+2 z+4

-z+3 -z+7-z+5

z-4 z-2

Z+2 j

Z-4 j

Z-2 j

-z-

ArcSinArcSin

-Z

Zsign

-Z Z-z+2 -z+4 -z+6

z-3 z- z+ z+3

Z-6 j

Z-8 j

Z2

Z3

ArcTan

ArcCos

Ln

z-6 z-5

1/Z

Ln(k)=Ln + 2k J

asin(k)=(-1)^k * asin + k

acos(k)=+/- acos +2k

atan(k) = atan +k

1-1

-i

i

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 44 of 124

- the multiple values for ACOS(z) –in yellow circles– are placed on the same two straight lines,

and are separated at intervals of 2 length on each line.

- the multiple values for ATAN(z) –in brown triangles- are placed on the upper of those straight

lines, separated at intervals of  length on it.

- the multiple values for Ln(z) –in blue squares- are placed on the vertical straight line

x=Re[LN(z)], and separated at intervals of 2 length on it.

- the three different values for z^1/3 are placed in the circle r=|z|^1/3, and are separated at
120 degrees from each other (angular interval).

NXTASN Next Complex ASIN Does LastZ

NXTACS Next Complex ACOS Does LastZ

NXTATN Next Complex ATAN Does LastZ

Let z0 be the principal value of the corresponding inverse trigonometric function. Each of these three
functions returns two values, z1 and z1’ placed in complex stack levels Z and W. z1 will be shown if the

function is executed in RUN mode. You can use Z<>W to see the value stored in W (that is, z1’)

The NEXT values z and z1’ are and given by the following recursion formulas:

Next ZASIN:

Z1 = Z0 + 2 pi

Z1’= -Z0 + pi

Next ZACOS:

Z1 = Z0+ 2 pi

Z1’ = -Z0 + 2 pi

Next ZATAN:

Z1=Z0 + pi

Z1’= Z0 – pi

The figure on the right plots the multi-valued
imaginary part of the complex logarithm function,

which shows the branches. As a complex number z
goes around the origin, the imaginary part of the

logarithm goes up or down:

For further information on multi-valued complex functions see the following excellent reference:
http://en.wikipedia.org/wiki/Branch_point

Note: See section 9 ahead for further details on multi-valued functions, with the FOCAL driver program

ZMTV (ZMulTiValue) that calculates all the consecutive results of the eight multi-value functions.

http://en.wikipedia.org/wiki/Branch_point

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 45 of 124

7.2 Complex Fibonacci Numbers. { ZFIB }

This short routine uses Binet’s formula applied to the complex domain to calculate the Fibonacci
number of a given complex “index”. The result is another complex number that for integer cases

coincides with the well-known Fibonacci series of course.

Binet’s formula interpolation to noninteger real indexes (below left) provides an easy expression for the

determination that guarantees real values also for the interpolated Fibonacci numbers

But it is in the complex domain (above right) when things become quite interesting, as can be seen in
the graphical representations below, showing the locus of output results when the input values are

negative real numbers (figure 1) and positive real value (figure 2). Note that both figures are not at the
same scale/ (see also the animation at: https://www.geogebra.org/m/ypqcuqcs)

Program listing:

01 LBL "ZFIB"

02 ZRPL^
03 1.618033989
04 X^Z
05 ZENTER^
06 0
07 LASTX
08 1/X
09 CHS
10 ZRUP
11 W^Z
12 5
13 SQRT
14 ST/ Z
15 /
16 ZAVIEW
17 END

Example:

ZFIB (1.5)

0, ENTER^, 1,5, Z$ “ZFIB”

Result:



https://www.geogebra.org/m/ypqcuqcs

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 46 of 124

8. 2D-vectors or complex numbers?

One of the common applications for complex numbers is their treatment as 2D vectors. This section

covers the functions in 41Z that deal with vector operations between 2 complex numbers.

Table 8.1. 2D vectors function group.

Index Function Formula Description

1 ZWANG Arg(ZW) = Arg(Z) – Arg(W) Angle between 2 vectors

2 ZWDIST |W-Z| = SQR[(Wx-Zx)^2 – (Wy-Zy)^2] Distance between 2 points

3 ZWDOT Z*W = Zx*Wx + Zy*Wy 2D vector Dot product

4 ZWCROSS Z x W = |z| *|w| *Sin(Angle) 2D vector Cross product

5 ZWDET |ZW| = Wx*Zy – Wy*Zx 2D determinant

6 ZWLINE a=(Y1-Y2) / (X1-X2)
b=Y2 – a*X2

Equation of line through two
points

These functions use W and Z levels of the complex stack, leaving the result in level Z after performing
complex stack drop. The original contents of Z is saved in the LastZ register.

The following screen captures from V41 show the different displays for these functions:

Let z = 4 <45 degrees, and w= 3 <75 degrees .

45, ENTER^, 4, ZREC -> 2,828(1+j)
ZREPL [don’t forget or Z will be overwritten]
75, ENTER^, 3, ZREC -> 0,776 + 2,898J

1. ZWANG,- angle defined between both vectors (in degrees in this case)

2. ZRDN , LASTZ, ZWDIST – distance between both complex numbers

 and

The angle will be expressed in the selected angular unit.

3. ZRDN , LASTZ, ZWDOT - dot product of both vectors
4. ZRDN, LASTZ, ZWCROSS - magnitude of the cross product of both vectors

 and

5. ZRDN, LASTZ, ZWDET - magnitude of the determinant of both vectors
6. ZRDN, LASTZ, ZWLINE - equation of the straight line linking both points

 and

(*) Note that despite having a simpler formula, ZWDET shows less precision than ZWCROSS.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 47 of 124

Alternate Displaying: Quads and Tones.

ZDISP Compacted LCD view Positive RE, IM D. Wilder

ZQUAD Shows Quad message Sets User flag

ZTONE Sounds Tone using Y,X Duration and frequency

These three functions provide additional user feedback on the complex value in the stack level Z (i.e.

stack registers Y,X). Use them as a complement to the main ZAVIEW, each has interesting aspects but

cannot be a full replacement to ZAVIEW given their shortcomings.

ZDISP main value is that it only uses the LCD to display a compacted version of the complex number.

This leaves the ALPHA register undisturbed, in cases it needs to maintain its contents through a

visualization of the Z result.

 or:

• Each Real and Imaginary parts are allowed six LCD characters,

• Each is split as follows: three for the mantissa, one for the exponent sign and two more for the

exponent itself.

• The two strings of six characters are separated by a comma to thell them apart

• No scrolling is supported, as all values are represented using the equivalent to a SCI 02 format.

Needless to say its main shortcoming is that it does not support negative values in the real or imaginary

parts. This can be partially palliated using ZQUAD prior to ZDISP, as this will set the corresponding
user flag depending on the complex location, leaving the other three flags from F1-F4 cleared:

- F1 set if bth Re(z)>0 and Im(z)>0
- F2 set if Re(z)<0 and Im(z)>0
- F3 set if both Re(z) and Im(z)<0
- F4 set if Re(z)?0 and Im(z)<0

ZQUAD will briefly show an informative message with the quadrant number, then it’ll revert to the
standard ZAVIEW output to end. It’ll also reset the user flags 1-2-3-4 corresponding to the quadrant.

ZTONE will sound an acoustic tone using the information in the Y,X registers for frequency and
duration; thus at least in theory each complex value is associated to its unique sound. In practice

however the typical values make all sounds rather alike so it is more of a curiosity than of practical
value. - for instance all real values (Im(z)=0) will have the same “blank” tone.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 48 of 124

9. Polynomial Roots and Evaluation

A classic in calculator history just got improved. The 41Z Deluxe adds to the set new fast MCODE
functions for the evalution of polynomials with complex coefficients, as well as their primitive and their

first and second derivatives.

Table 9.1. Polynomial Evaluations group.

ZPL Polynomial Evaluation Control word in X Does LastZ

ZPLI Primitive of Polynomial Control word in X Does LastZ

ZPD1 Pol. First derivative Control word in X Does LastZ

ZPD2 Pol. Second Derivative Control word in X Does LastZ

ZINPT Data Input Routine Control word in X FOCAL Routine

ZOUPT Data Output Routine Control word in X FOCAL Routine

Besides the evaluation point z0, the evaluation functions require a control word as input parameter.

This control word defines the complex register range used to store the polynomial coefficients, in the

usual form “bbb.eee”, with the highest term coeff. stored in ZRbbb. If the dregree of the polynomial is
“n” there should be n+1 complex registers in the range, i.e. (eee-bbb) = n

Like the other hybrid functions in the module, you need to enter the complex value first (z0) and then

the real value (control word) in the X-register – which will push z0 one level up in the REAL stack. The

result will be retuned in the complex-Z register, with z0 saved in LastZ - but the control word is lost
(i.e. not saved in LastX).

The utility routines ZINPT and ZOUPT come very handy to enter the polynomial coefficients in the

complex registers. They too use the same control word bbb.eee to define the complex register range
used for the input/output action. Let’s see one example next.

Example: Evaluate the polynomial, main primitive and derivatives in the point z0=1+i for the 4th.-
degree polynomial: P(z) = (1+i) z^4 – (2-3i) z^3 + (-1+2i) z^2 + z – (1+i)

First we introduced the coefficients in the complex data registers ZR00 to ZR04 as follows. Note that

the index in the prompts refers to the complex register to use, and not to the polynomial term:

0.004, ZF$ “ZINPT”, ”Z0=?”

1, ENTER^, R/S “Z1=?”
3, ENTER^, 2, CHS, R/S “Z2=?”

2, ENTER^, 1, CHS, R/S ”Z3=?“
0, ENTER^, 1, R/S “Z4=?”

1, ENTER^, ZNEG, R/S shows Z-level again

With the data safely stored in {ZR00 – ZR04} we proceed to calculate the results. First we enter the
evaluation point in the complex Z register, followed by the control word in X:

1, ENTER^, ENTER^, 0.004, XEQ “ZPL” => -10-J16
LASTZ, 0.004, ZF$ “ZPD1” => -39-J10

LASTZ, 0.004, ZF$ “ZPD2” => -56+J34
LASTZ, 0.004 ZF$ “ZPLI“ => 1.333-J7.600

Note how the result for the polynomial and derivatives have integer real and imaginary parts (i.e. are

Gaussian numbers) – but the primitive is not. We’ll revisit these results when we cover the Complex
Derivative Engine in the next chapters.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 49 of 124

Preview: Polynomial Roots and Values Launchers - both together now.

A convenient grouping of the polynomial functions provides access to the individual choices from a
common prompt. To access it you can use its dedicated launcher from the complex keyboard shortcut

- just press:

 [Z], [A], [L], [SHIFT]

Options “I” / “O” will trigger ZINPUT and ZOUPT respectively. Note that there are other functions
also included here (“F” and “D”), which are related to the first derivative and continued fractions. They

will be covered in another chapter later in the manual.

Note also that pressing [SHIFT] again this launcher toggles with the corresponding for the Complex
Roots, as shown below:

 ----→

A convenient grouping of the root-finding applications provides access to the root finders for the first,
second, third and n-th. degree polynomials, as well as the general-purpose ZSOLVE. To access it you

can call the sub-function ZPRT, or using the complex keyboard shortcut just press:

 [Z], [A], [L]

The first-degree option is for function ZWLINE - not strictly a root finder but being such a simple case

it’s convenient to have it also in the group.

For ZQRT and ZCRT the coefficients are expected to be in the complex stack prior to the execution –

whilst ZPROOT and ZSOLVE will prompt for the required entries.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 50 of 124

Solution of Quadratic and Cubic equations.

ZQRT Roots of 2nd. Degree Eq. Coeffs. in Z-Stack All MCODE

ZCRT Roots of 3rd. Degree Eq. Coeffs. In Z-Stack FOCAL program

ZQUDR Driver for ZCRT Prompts for values FOCAL Routine

ZQRT Solves the roots of a quadratic equation with complex coefficients, as follows:

C 1 * z2 + C2 * z + C3 = 0; where C1, C2, C3, and z are complex numbers

By applying the general formula: z1,2 = [-C2 +/- SQR(C2

2 – 4C1*C3)] /2*C1

Example 1.- find out the roots of (1+i)*z2 + (-1-i)*z + (1-i) = 0

1, ENTER^, ZENTER^

1, CHS, ENTER^, ZENTER^
1, CHS, ENTER^, 1, XEQ “ZQRT”

“RUNNING...” followed by: “ 1,300+j0,625“

Z<>W “ -0,300-j0,625”

We see that contrary to the real coefficients case, here the roots are NOT conjugated of one another.

ZQRT is entirely written in MCODE. It expects the three complex coefficients stored in levels V, W,

and Z of the complex stack. The driver program below is an example using FOCAL instructions instead.
Note also that no memory registers are used, and all calculations are performed using exclusively the

complex stack. The core of the program is from lines 16 to 37, or just 21 programming steps to resolve
both roots.

1 LBL "ZQDR"

2 "aZ^2+bZ+c=0"

3 AVIEW

4 PSE

5 "IM^RE a=?"

6 PROMPT

7 ZENTER^

8 "IM^RE b=?"

9 PROMPT

10 ZENTER^

11 "IM^RE c=?"

12 PROMPT

13 "RUNNING…"

14 AVIEW

15 LBL "ZQRT"

16 ZENTER^

17 ZR^

18 Z/

19 LASTZ

20 ZR^

21 Z<>W

22 Z/

23 ZHALF

24 ZNEG

25 ZENTER^

26 ZENTER^

27 Z^2

28 ZR^

29 Z-

30 ZSQRT

31 ZENTER^

32 ZNEG

33 ZR^

34 Z+

35 ZRDN

36 Z+

37 ZRUP

38 SF 21

39 ZAVIEW

40 Z<>W

41 CF 21

42 ZAVIEW

43 END

Solving the Cubic Equation.

Example 2. Obtain the three roots of (1+2i) z^3 – (2-i) z – 3i = 0

We type: 2, ENTER^, 1, [Z], 0, ZENTER^, 1, ENTER, 2, CHS, [Z] , [,], 3, ZNEG
to obtain the three solutions in the complex stack, as follows:

XEQ “ZCRT” → z1 = -0,117-J0,910

ZRDN → z2 = -0,922+J1,047

ZRDN → z3 = 1,039-J0,136

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 51 of 124

Two ways to skin the third-degree Equation Cat.

The programs below show two alternative solutions for the third degree equation roots. Note the

existing symmetry between them, in fact identical until step 31. The version on the left is the
implemented in the 41Z module. Both use a variation of the Cardano-Vieta formulas involving some

trigonometry tricks that notably reduce the number of steps.

1 LBL "ZCRT" Main version LBL "ZCRT2"
Alterntaive
Version

2 ZRUP a3 ZRUP a3

3 Z/ a0/a3 Z/ a0/a3

4 ZSTO (00) a0' ZSTO (00) a0'

5 Z<>W a1 Z<>W a1

6 LASTZ a3 LASTZ a3

7 Z/ a1/a3 Z/ a1/a3

8 ZSTO 01 a1' ZSTO 01 a1'

9 ZRUP a'2 ZRUP a'2

10 LASTZ a3 LASTZ a3

11 Z/ a2/a3 Z/ a2/a3

16 3 3

17 ST/ Z ST/ Z

18 / /

19 ZSTO 02 a2' / 3 ZSTO 02 a2' / 3

12 Z^2 a2^2 / 9 Z^2 a2^2 / 9

13 3 3

14 ST* Z ST* Z

15 * a2^2 / 3 * a2^2 / 3

20 Z- a1-a2^2 / 3 Z- a1-a2^2 / 3

21 ZRCL 02 a2 /3 ZRCL 02 a2 /3

22 Z^3 a2^3 / 27 Z^3 a2^3 / 27

23 ZDBL 2 a2^3 /27 ZDBL 2 a2^3 /27

24 ZRCL 01 a1 ZRCL 01 a1

25 ZRCL 02 a2/3 ZRCL 02 a2/3

26 Z* a1*a2 /3 Z* a1*a2 /3

27 Z- (a2^3 / 27)- (a1*a2/3) Z- (a2^3 / 27)- (a1*a2/3)
28 ZRCL (00) a0 ZRCL (00) a0

29 Z+ q = a0 + (a2^3 / 27)- (a1*a2/3) Z+ q = a0 + (a2^3 / 27)- (a1*a2/3)
30 ZHALF q/2 ZHALF q/2

31 Z<>W p Z<>W p

32 3 -3

33 ST/ Z ST/ Z

34 / p/3 / -p/3

35 Z/ 3q/2p Z/ -3q/2p

36 LASTZ p/3 LASTZ -p/3

37 ZSQRT sqr(p/3) ZSQRT sqr(-p/3)

38 ZSTO (00) ZSTO (00)

39 Z/ 3q/2p / sqr(p/3) Z/ -3q/2p / sqr(-p/3)

40 ZHASIN ZASIN

41 3 3

42 ST/ Z ST/ Z

43 / 1/3 asin[] /

44 ZRPL^ Fill complex stack ZRPL^ Fill complex stack
45 ,002 ,002

46 STO 02 STO 02

47 RDN RDN

48 LBL 02 Data output loop LBL 02 Data output loop

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 52 of 124

49 RCL 02 RCL 02

50 INT INT

51 120 2k/3 120 2k/3

52 D-R D-R

53 * *

54 ST+ Z add to imaginary part + add to real part

55 RDN tidy up stack ZSIN

56 ZHSIN ZRCL (00)

57 ZRCL (00) Z*

58 Z* ZDBL

59 ZDBL ZRCL 02 a2/3

60 ZNEG Z-

61 ZRCL 02 a2/3 ZAVIEW

62 Z- ZRUP save in Z-stack

63 ZAVIEW Show progress… ISG 02 Increase counter

64 ZRUP save in Z-stack GTO 02 Go for next

65 ISG 02 Increase counter END done

66 GTO 02 Go for next

67 END done

As you can see the density of 41Z functions is remarkable. The 41Z complex function set and complex

stack enables the programmer to treat complex calculations as though they used real numbers, not
worrying about the real or imaginary parts but working on the complex number as single entity. In fact,

exercising some care (notably to ensure complex stack lift), you could almost translate many FOCAL
programs by replacing the standard functions one-to-one with the equivalent complex ones. That’s why

it’s important that the function set be as complete as possible, and that the complex stack
implementation follows the same RPN conventions.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 53 of 124

Roots of Complex Polynomials. { ZPROOT , ZPLRT }

ZPROOT Roots of Polynomials Data entry/output Valentín Albillo

ZPLRT Polynomial Roots Uses Newton method Martin - Baillard

These programs calculate all the roots of a polynomial of degree n, and with complex coefficients. It is

therefore the most general case of polynomial root finders that can possibly be used, as it also will
work when the coefficients are real.

• The first one is a wonderful example of FOCAL capabilities, and very well showcases the

versatility of the HP-41C (even without the 41Z module). It was first published on PPC
Technical Notes, PPCTN – the journal of the Australian chapter of the PPC. The program

includes data entry and output, simply answer the prompts as they’re presented. See the
program listing in the appendix below.

• The second is a direct implementation of the Newton method combined with a deflation

technique for each root found using the iterative process. It is based on JM Baillard’s example

for real roots (see paragraph #1.f at: http://hp41programs.yolasite.com/polynomials.php),
simply replacing the standard HP-41 functions with 41Z equivalents – to make it valid in the

complex domain. This method takes advantage of the polynomial evaluation and first derivative
MCODE functions (ZPL and ZPLD1) , which should reduce considerably the execution time

provided that a good initial guess is provided.

The routine assumes the polynomial coefficients are stored in Complex Data registers ZR(bbb) to

ZR(eee) - the initial guess is the {Z,Y} stack registers, and the polynomial control word “bbb.eee” in the

X-register (using Complex Data register indexes). You can automate the data entry process using sub-
function ZINPT, make sure that the first complex register used is no lower than ZR03 (i.e. real registers

{R06 and R07})

 01 LBL "ZPRT bbb,eee
 02 STO 02
 03 STO 03 reg range
 04 STO 04
 05 RDN
 06 ZSTO (00)
 07 ISG 04
 08 LBL 01
 09 ZRCL (00)
 10 ZAVIEW
 11 RCL 03 reg range
 12 ZPL
 13 LASTZ
 14 RCL 03 reg range
 15 ZPLD1 (ZF# 47)

 16 Z/
 17 ZST- (00)
 18 ZRCL (00)
 19 Z=0?
 20 SIGN
 21 Z/
 22 ZMOD
 23 E-8 tolerance
 24 X<Y?
 25 GTO 01
 26 E-3 0,001
 27 ST- 03 deflate pol
 28 RCL 03 reduced deg
 29 STO 05 used as index
 30 CLZ

 31 LBL 02
 32 ZRC* (00)
 33 ZST+ IND 05
 34 ZRCL IND 05
 35 ISG 05
 36 GTO 02
 37 ZRCL (00)
 38 ZSTO IND 05
 39 ISG 04
 40 GTO 01
 41 RCL 02
 42 E
 43 + bbb+1,eee
 44 END

Registers used by ZPLRT.

The program uses ZR00 (i.e. {R00-R01}) to hold the current complex guess, and registers R02-R05 for
scratch. Therefore the polynomial coefficients cannot be stored in complex registers below ZR03 (i.e.

{R06-R07}).

This method convergence is quite fast, which also contributes to the general good performance. This

however is conditioned to a good initial guess as entered by the user.

http://hp41programs.yolasite.com/polynomials.php

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 54 of 124

Example 1.- Calculate the roots of P(x) = 2.x^5 + 3.x^4 – 35.x^3 – 10.x^2 + 128.x -74

Using ZINPT we introduce the six coefficients in registers {ZR03 – ZR08}, then enter the guess

z0=(1+0i) and the control word for the polynomial, then execute the routine. The successive values are

shown, and upon completion the control word of the roots is left in X – so you can use ZOUPT to
review. The roots are all real, with values:

ZRCL 03 -> -4.373739462
ZRCL 04 -> -2.455070118
ZRCL 05 -> 2.984066207
ZRCL 06 -> 1.641131729
ZRCL 07 -> 0.703611645

Example 2.- Calculate the three roots of: x3 + x2 + x + 1

XEQ “ZPROOT” -> “DEGREE=?”
3, R/S -> “IM^RE (3)=?“
0, ENTER^, 1, R/S -> “IM^RE (2)=?“
0, ENTER^, 1, R/S -> “IM^RE (1)=?“
0, ENTER^, 1, R/S -> “IM^RE (0)=?“
0, ENTER^, 1, R/S -> “SOLVING...”

 -> “FOUND ROOT#3”, and “SOLVING…”
 -> “FOUND ROOT#2”, and “SOLVING…”
 -> “FOUND ROOT#1”

➔ -5,850E-14-j1 (that is, -i)
➔ 5,850E-14+j1 (that is, i)
➔ -1+j1,170E-13 (that is, -1)

Example 3.- Calculate the four roots of: (1+2i)*z4 + (-1-2i)*z3 + (3-3i)*z2 + z – 1

XEQ “ZPROOT” -> “DEGREE=?”
4, R/S -> “IM^RE (4)=?“
2, ENTER^, 1, R/S -> “IM^RE (3)=?“
2, CHS, ENTER^, 1, CHS, R/S -> “IM^RE (2)=?“
3, CHS, ENTER^, CHS, R/S -> “IM^RE (1)=?“
0, ENTER^, 1, R/S -> “IM^RE (0)=?“
0, ENTER^, 1, CHS, R/S -> “SOLVING…”

 -> “FOUND ROOT#4”, and “SOLVING…”
 -> “FOUND ROOT#3”, and “SOLVING…”
 -> “FOUND ROOT#2”, and “SOLVING…”

-> “FOUND ROOT#1”
 1,698+J0,802 R/S

➔ -0,400-J0,859 R/S
➔ 0,358+J0,130 R/S
➔ -0,656-J0,073

The four solutions are: z1 = 1,698 + 0,802 j or: 1,878 <) 25,27
 z2 = -0,400 - 0,859 j or: 0,948 <)-114,976

 z3= 0,358 + 0,130 j or: 0,381 <) 9,941
 z4 = -0,,656 - 0,073 j or: 0,660 <)-173,676

(*) You can also use the Z-pad to input real coefficients, i.e. [Z], 1 instead of 0, ENTER^, 1.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 55 of 124

Appendix.- Program Listing for ZPROOT

1 LBL "ZPROOT" 44 CF 00 87 E-3 130 GTO 02

2 SIZE? 45 CHS 88 ST+ 01 131 RCL 08

3 "DEGREE=?" 46 STO 04 89 RCL 03 132 ST* Z

4 PROMPT 47 FIX 2 90 STO IND 05 133 *

5 STO Z 48 RND 91 RCL 04 134 DSE 08

6 ST+X 2N 49 FIX 6 92 STO IND 06 135 GTO 02

7 11 50 X#0? 93 DSE 00 136 RTN

8 + 2N+11 51 GTO 01 94 GTO 06 137 LBL 00

9 X>Y? 52 SIGN 95 TONE 5 138 ZENTER^

10 PSIZE 53 STO 04 96 RCL 01 139 RCL 04

11 RCL Z 54 LBL 01 97 INT 140 RCL 03

12 STO 00 N 55 RCL 00 98 E1 141 Z*

13 STO 03 N 56 STO 08 99 - 142 RCL IND 05

14 9,008 57 SF 01 100 E3 143 FS? 01

15 + 58 XEQ 11 101 / 144 RCL 08

16 STO 01 N+9,008 59 R-P 102 ST- 05 145 FS? 01

17 STO 05 N+9,008 60 1/X 103 FIX 3 146 *

18 X<>Y 2N+11 61 STO 07 104 SF 21 147 +

19 E 62 X<>Y 105 LBL 10 148 FS? 00

20 - 2N+10 63 CHS 106 ISG 00 149 STO IND 05

21 STO 02 2N+10 64 STO 08 107 NOP 150 X<>Y

22 STO 06 65 CF 01 108 RCL IND 06 151 RCL IND 06

23 FIX 0 66 XEQ 11 109 RCL IND 05 152 FS? 01

24 CF 29 67 ZENTER^ 110 ZAVIEW 153 RCL 08

25 LBL 05 68 RCL 08 111 DSE 06 154 FS? 01

26 "IM^RE(" N 69 RCL 07 112 DSE 05 155 *

27 ARCL 03 70 P-R 113 GTO 10 156 +

28 "|-)=?" 71 Z* 114 CF 21 157 FS? 00

29 PROMPT 72 ST- 03 115 SF 29 158 STO IND 06

30 STO IND 05 73 X<>Y 116 RTN 159 X<>Y

31 X<>Y 74 ST- 04 117 LBL 11 160 FS? 01

32 STO IND 06 N-1 75 ZRND 118 RCL 01 161 DSE 08

33 DSE 03 76 Z#0? 119 STO 05 162 LBL 02

34 X<>Y 77 GTO 01 120 RCL 02 163 DSE 06

35 DSE 06 78 FIX 0 121 STO 06 164 DSE 05

36 DSE 05 79 "FOUND ROOT#" 122 FC? 01 165 GTO 00

37 GTO 05 80 ARCL 00 123 GTO 13 166 END

38 RCL 03 81 AVIEW 124 E-3

39 LBL 06 82 SF 00 125 ST+ 05

40 "SOLVING..." 83 XEQ 11 126 LBL 13

41 AVIEW 84 E 127 RCL IND 06

42 SF 25 85 ST+ 05 128 RCL IND 05

43 SF 99 86 ST+ 06 129 FC? 01

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 56 of 124

10. It’s a Gamma-Zeta world out there.

This section describes the different functions and programs included on the 41Z that deal with the

calculation of the Gamma and Zeta functions in the complex plane. A group of six functions in total,
three completely written in machine code and three as FOCAL programs, with a couple of example

applications to complement it.

Table 10.1. Gamma function group.

ZGAMMA Complex Gamma function for z#-k, k=integer Does LastZ

ZLNG Gamma Logarithm see below Does LastZ

ZPSI Complex Digamma (Psi) see below Does LastZ

ZIGAM Inverse of Gamma Iterative method FOCAL program

ZPSIN Complex Poly-Gamma See below FOCAL program

ZZETA Complex Riemann Zeta For z#1 FOCAL program

ZGAMMA uses the Lanczos approximation to compute the value of Gamma. An excellent reference
source is found under http://www.rskey.org/gamma.htm, written by Viktor T. Toth. To remark that

ZGAMMA is implemented completely in machine code, even for Re(z)<0 using the reflection formula

for analytical continuation.

For complex numbers on the positive semi-plane [Re(z)>0], the formula used is as follows

And the following identity (reflection formula) is used for numbers in the negative semi-plane:

[Re(z)<0]: which can be re-written as: (z) * (-z) = - / [z*Sin( z)]

For cases when the real part of the argument is negative [Re(z)<0], ZGAMMA uses the analytical

continuation to compute the reflection formula – all internal in the MCODE and transparent to the user.

Example 1.- Calculate (1+i)

1, ENTER^, ZGAMMA -> “RUNNING…”, followed by -> 0,498-j0,155

Example 2.- Verify that (1/2) = SQR()

0, ENTER^, 0.5, ZGAMMA -> 1,772 + j0
PI, SQRT, ZREAL^, Z- -> -2,00E-9 + j0

Example 3.- Calculate (-1.5+i)

1, ENTER^, 1.5, CHS, ZGAMMA -> 0,191 + j0,174

q 0 =

75122.6331530

q 1 =

80916.6278952

q 2 =

36308.2951477

q 3 =

8687.24529705

q 4 =

1168.92649479

q 5 =

83.8676043424

q 6 =

2.5066282

http://www.rskey.org/gamma.htm

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 57 of 124

The graphic below (also from the same web site) shows Gamma for real arguments. Notice the poles at

x=0 and negative integers. Also below the Stirling’s approximation for Gamma:

The following graphic showing the module of the Complex Gamma function is taken from

http://en.wikipedia.org/wiki/Gamma_function.- Note the poles at the negative integers and zero.

Example: Use ZLNG to calculate (1+i) and compare it with the value obtained by ZGAMMA

1, ENTER^, ZGAMMA, LASTZ, ZLNG, ZEXP, Z- -> 2,400E-9+j3,000E-10

http://en.wikipedia.org/wiki/Gamma_function

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 58 of 124

Digamma and LogGamma Functions { ZPSI , ZLNG }

Both the Digamma and LogGamma are implemented entirely in MCODE – fast execution and full LastZ

support of the original argument. No data registers are used, no additional complex stack levels.

The formula used is the approximation for Digamma when x>8:

programmed as: u^2{[(u^2/20-1/21)u^2 + 1/10]u^2 –1}/12 – [Ln u + u/2],

where u=1/x; and using the following precision correction factor when x<8

Equivalent Program listings.- The two FOCAL programs listed below calculate the Digamma and the

Gamma functions for complex arguments. The first one is an example using the asymptotic

approximation as described below, whilst the second one is an extension of the MCODE function
ZGAMMA, using the reflection formula for arguments with Re(z)<1 (programmed in turn as another

MCODE function, ZGNZG).

01 LBL "ZPSI" 26 Z/ 01 LBL "ZG"

02 ZREPL^ 27 21 02 ZENTER^

03 7 E-3 28 1/X 03 X<>Y

04 STO O 29 ZREAL^ 04 X#0?

05 CLZ 30 Z- 05 GTO 00

06 LBL 00 31 Z* 06 X<>Y

07 Z<>W 32 0.1 07 X>0?

08 RCL O 33 + 08 GTO 00

09 INT 34 Z* 09 INT

10 + 35 E 10 LASTX

11 ZINV 36 - 11 X#Y?

12 Z+ 37 Z* 12 GTO 00

13 ISG O 38 12 13 0

14 GTO 00 39 ZREAL^ 14 1/X

15 ZSTO 40 Z/ 15 LBL 00

16 E 41 ZRCL (00) 16 ZRDN

17 Z<>W 42 ZLN 17 CF 00

18 8 43 LASTZ 18 X<0?

19 + 44 ZHALF 19 SF 00

20 ZINV 45 Z+ 20 FS? 00

21 ZSTO (00) 46 Z- 21 ZNEG

22 Z^2 47 ZRCL 22 FS? 00

23 ZREPL 48 E 23 INCX

24 20 49 Z- 24 ZGAMMA

25 ZREAL^ 50 ZAVIEW 25 FC? 00

51 END 26 GTO 01

27 LASTZ

for x>8 28 ZGNZG

Ps i (x) = ln x - 1/(2x) -1/(12x2) + 1/(120x4) - 1/(252x6) + 1/(240x8) 29 Z<>W

together with the relationship: Ps i (x+1) = Ps i (x) + 1/x 30 Z/

31 LBL 01

32 ZAVIEW

33 END

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 59 of 124

The following two programs calculate the Logarithm of the Gamma function for complex arguments.

The first one uses the Stirling approximation, with a correction factor to increase the precision of the
calculation. This takes advantage of the ZGPRD function, also used in the Lanczos approximation.

correction factor: Ln(z) = Ln(z+7) – Ln[PROD(z+k)|k=1,2..6]

The second one applies the direct definition by calculating the summation until there’s no additional

contribution to the partial result when adding more terms. In addition to being much slower than the
Stirling method, this is also dependent of the display precision settings and thus not the recommended

approach. It is not included on the 41Z but nevertheless is an interesting example of the utilization of
some of its functions, like Z=WR? and the memory storage registers, ZSTO and ZRCL.

The table above shows the
correspondence between the complex

register number (ZRnn) and the
required SIZE in the calculator. Note

that a minimum of SIZE 002 is

required for ZR00 to exist.

01 LBL "ZLNG" 01 LBL "ZLNG2"

02 7 02 1

03 + (z+7) 03 STO 02

04 ZST0 (00) 04 RDN

05 Text-0 NOP 05 ZSTO (00)

06 6 06 XEQ 05

07 Z^X 07 LBL 00

08 810 08 ZENTER^

09 ST* Z 09 XEQ 05

10 * 10 Z+

11 ZINV 11 Z=WR?

12 ZRCL (00) 12 GTO 02

13 ZINV 13 GTO 00

14 ZSINH 14 LBL 02

15 ZRCL (00) 15 ZRCL (00)

16 Z* 16 ZLN

17 Z+ 17 Z-

18 ZLN 18 ZRCL (00)

19 ZRCL (00) 19 0,5772156649

20 ZLN 20 ST* Z

21 ZDBL 21 *

22 Z+ 22 Z-

23 2 23 ZAVIEW

24 - 24 RTN

25 ZRCL (00) 25 LBL 05

26 Z* 26 ZRCL (00)

27 ZRCL (00) 27 RCL 02

28 ZLN 28 ST/ Z

29 Z- 29 /

30 PI 30 ZENTER^

31 ST+ X 31 1

32 LN 32 +

33 + 33 ZLN

34 ZHALF 34 Z-

35 ZRCL (00) 35 1

36 Text-0 NOP 36 ST+ 02

37 7 37 RDN

38 - z 38 END

39 ZGPRD

40 ZLN

41 Z-

42 ZAVIEW

43 END

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 60 of 124

Poly-Gamma Function { ZPSIN }

To complete the set of Gamma-related functions, here’s a 41Z version of JM Baillard’s program to
calculate PSIN for a generic integer degree n. The program listing is given below, notice the usage of

the STO math functions as well as other 41Z fixtures (like the complex stack and data register

management) showcasing the applicability of the function set.

1 LBL "ZPSIN
02 STO 09
03 RDN
04 ZSTO 01
05 CLX
06 STO 04
07 STO 05
08 LBL 01
09 ZRCL 01
10 ZSTO 00
11 RCL 09
12 8
13 +
14 X<Y?
15 GTO 00
16 CLX
17 E
18 RCL 09
19 +
20 CHS
21 Z^X
22 ZST+ 02
23 E
24 ST+ 02
25 GTO 01
26 LBL 00
27 ZRCL 00
28 ZSTO 03
29 ZRCL 01
30 Z^2
31 ZINV
32 ZSTO 00
33 ZSTO 01
34 RCL 09
35 9
36 +
37 FACT
38 39.6
39 /
40 0
41 X<>Y

42 ZST* 00
43 XEQ 05
44 RCL 09
45 7
46 +
47 FACT
48 ST- 00
49 XEQ 05
50 0
51 40
52 ZST/ 00
53 RCL 09
54 5
55 +
56 FACT
57 ST+ 00
58 XEQ 05
59 0
60 42
61 ZST/ 00
62 RCL 09
63 3
64 +
65 FACT
66 ST- 00
67 XEQ 05
68 0
69 6
70 ZST/ 00
71 RCL 09
72 FACT
73 STO 08
74 ZST* 02
75 ZRCL 00
76 ZSTO 01
77 ZRCL 03
78 ZINV
79 RCL 08
80 ST* Z
81 *
82 ZSTO 00

83 Z<>W
84 ZST+ 00
85 NOP
86 2
87 ST/ 00
88 ST/ 01
89 RCL 09
90 X=0?
91 GTO 00
92 E
93 -
94 FACT
95 ST+ 00
96 ZRCL 00
97 ZSTO 01
98 ZRCL 03
99 RCL 09
100 CHS
101 Z^X
102 Z*
103 GTO 02
104 LBL 00
105 ZRCL 00
106 ZSTO 01
107 ZRCL 03
108 ZLN
119 Z-
110 LBL 02
111 ZRCL 02
112 Z+
113 RCL 09
114 ZCHSX
115 ZNEG
116 ZAVIEW
117 RTN
118 LBL 05
119 ZRCL 01
120 ZST* 00
121 END

Examples: Calculate (n=2) Tetra- and (n-3) Penta-gamma of z=1+i, and w=-1-i :

1, ENTER^, ENTER^, 2, ZF$ “ZPSIN” => “RUNNING…” => 0.369+J0.767

1, ENTER^, ENTER^, 3, LASTF => “RUNNING…” => -1.523-J0.317
1, CHS, ENTER^, ENTER^, 2, ZF$ “ZPSIN” => “RUNNING…” => -0.131+J0.733

1, CHS, ENTER^, ENTER^, 3, LASTF => “RUNNING…” => 2.977+J0.317

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 61 of 124

Inverse Gamma Function and Catalan Numbers { ZIGAM , ZCTLN }

Here’s the extension to the complex realm of the Inverse Gamma function first introduced in the
SandMath module. Like its real variable counterpart, this is not a very useful beyond the academic

interest: arter all, who needs to know what arguments yield a given gamma function result?

Well if you’d ever need to know, here’s where you can get *some* answers - and I deliberately say

some because in the complex plane this is a multi-valued function, which it’s yet to be seen whether it
has any formation rule for the different branche… but that, I guess, is another story altogether.

You can refer to the SandMath manual for a description of the algorithm used, which is applied directly

here simply replacing the real functions with their complex counterparts.

The function is located in the -DELUXE section of the auxiliary FAT, and you can access it either by

means of the sub-function launchers or via the extended “General Methods” launcher, ZL, [A], [R/S]

Example1: Obtain a complex value z which yields (z) = 1+i

1, ENTER^, [Z], ALPHA, “ZIGAM” -> “RUNNING…”

 0 0.412574972 – J 0.404915377

Note that the function follows an iterative process (Newton’s method actually_. Each time an iteration is

completed the program shows the module of the difference between the current and previous
arguments, which when convergence exists it will be decreasing until it’s less that the 1 E-8 tolerance

used.

Example2: Use the ZLASTF feature to obtain which real value x yields (x) = 2

 [Z], 2, [Z], [,],[,] -> “RUNNING…”
 0.442877396 – J 9.0000000 E-24

Complex Catalan Numbers

Based on the classic combinatorian definition, one can extend the concept using the Gamma function

instead of the factorials as follows:

Where n is a complex number (not neccessarily an integer). So we see it basically consistes of two
calculations of the Gamma function, which in the 41Z module is convenientely implemented as an

MCODE function – so a trivial FOCAL routine does the trick.

Examples: Obtain the C(n) values for n=1, 2, 3, and i+1

C(1) = 1.000000001 + J0

C(2) = 1.999999990 + J0
C(3) = 5.000000011 + J0

C(1+i) = 0.661301105 + J 0.443764974

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 62 of 124

10.1. Riemann’s Zeta function. { ZZETA }

Included in the 41Z is an implementation of the Borwein algorithm to calculate the Zeta function.
Considering the task at hand this does an excellent job, providing accurate results in acceptable

execution times. Obviously won’t win the speed contest, nor will it help you find non-trivial zeroes
outside of the critical strip ☺

Example: calculate (2)

2, ZREAL^, ZZETA -> 1,645+J0
FIX 9 -> 1,644934066

The program is a modified version of JM Baillard’s ZETAZ, written for complex arguments – only

adapted to use the 41Z complex stack and related functions. See the program listing in next page if

interested. The algorithm is summarized as follows:

• For the case Re(z)<0.5 , 2 formulas may be used

(z) = (1-z) 2^z ^(z-1) sin((z/2)) (1-z)

(z) = (1-z) ^(z-1/2) ((1-z)/2) / (z/2)

• If Re(z) >=0.5

(z) = (z) / (1-2^(1-z))

where:

 (z) = {(-1)^k/k^z}, k=0,1,2,…

is calculated by:

 (z) = (-1/dn) {(-1)^k (dk-dn)/(k+1)^z}, k=0 to n-1

where:

dk = n {(n+j-1)! 4^j)/((n-j)!(2j)!} , j=0 to k

with an error:

 | e | <= (3/(3+sqrt(8))^n) [1+2 Im(z)] exp [p Im(z) / 2]

Note that dk is calculated using the following approach:

dk = e(0)+e(1)+...+e(k)

where :

e(0)=1 and

 2(n^2 – j^2) e(j)
 e(j+1) = ----------------------
 [(1+j)(2j+1)]

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 63 of 124

FOCAL program for ZZETA:- Uses R00 to R11. No Flags used.

01 LBL "ZZETA" 51 ST+ X 101 X^2

02 X=0? 52 LN1+X 102 RCL 10

03 GTO 00 53 + 103 DSE X

04 .5 54 3 E10 104 NOP

05 CHS 55 LN 105 X^2

06 ZAVIEW 56 + 106 -

07 RTN 57 8 107 ST+ X

08 LBL OO 58 SQRT 108 /

09 CF 00 59 3 109 STO 03

10 ZSTO 03 R06 - Re(z) 60 + 110 ST+ 05

11 ZSTO 00 R07 - Im(z) 61 LN 111 DSE 10

12 ,5 62 / 112 GTO 01

13 X<=Y? 63 INT 113 RCL 05

14 GTO 00 64 E 114 ST/ 08

15 SF 00 65 + 115 ST/ 09

16 SIGN 66 STO 10 116 RCL 07

17 - 67 STO 02 117 CHS

18 ZNEG R06: - Im(z) 68 LASTX 118 STO 11

19 ZSTO 03 R07: 0,5-Re(z) 69 STO 11 119 RCL 06

20 XEQ 00 70 STO 03 120 CHS

21 ZRCL 00 71 STO 05 121 2

22 ZNEG 72 CHS 122 LN

23 E 73 X<>Y 123 *

24 + 74 Y^X 124 E

25 2 75 CHS 125 RAD

26 ST/ Z 76 STO 04 126 P-R

27 / 77 CLX 127 ENTER^

28 ZGAMMA 78 STO 08 128 DEG

29 Z* 79 STO 09 129 E

30 ZRCL 00 80 LBL 01 130 ST+ 11

31 ,5 81 ZRCL 03 131 -

32 - 82 ZNEG 132 RCL 11

33 PI 83 RCL 10 133 2^X-1

34 X^Z 84 X^Z 134 ST* Z

35 Z* 85 RCL 05 135 X<> T

36 ZRCL 00 86 RCL 04 136 ST* T

37 2 87 CHS 137 ST+ T

38 ST/ Z 88 STO 04 138 RDN

39 / 89 * 139 +

40 ZGAMMA 90 ST* Z 140 ZST/ 04

41 Z/ 91 * 141 ZRCL 04

42 ZAVIEW 92 ZST+ 04 142 FC? 00

43 RTN 93 RCL 10 143 ZAVIEW

44 LBL 00 94 ENTER^ 144 END

45 PI 95 ST+ Y

46 2 96 ST* Y

47 / 97 -

48 RCL 06 Re(z) 98 RCL 03

49 ABS 99 *

50 ST* Y 100 RCL 02

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 64 of 124

10.2 Lambert W function. { ZWL , ZAWL }

ZWL Lambert W(z) FOCAL program

ZAWL Inverse of Lambert-W z* e^z Does LastZ

These two functions provide a dedicated way to compute the Lambert-W function and its inverse.
The FOCAL program uses an iterative method to compute W(z), using z0=1+Ln(z) as initial guess for

Re(z)>0, and simply z0=(1+ i) elsewhere.

This program is based on a real-mode version written by JM Baillard, just applying the seamless

transposition method provided by the 41Z module. In the vast majority of cases convergence is
provided for all complex arguments, with 8-decimal digits accuracy. It uses the Z=WR? Function on

FIX 8 mode to determine that two consecutive iterations are equal.

The inverse function is a simple product: W-1(z) = z * e^z.

Not worth the FAT entry, you say? For one thing, doing it in MCODE allows for 13-digit accuracy in the

calculations. Besides, how often will you forget the exact formula? Better safe than sorry…

Note that ZWL is a FOCAL program, and thus you

won’t be able to use LASTZ to recover the initial
argument. This is common to all the function

simplemented as FOCAL routines instead of full MCODE

functions.

Examples. Calculate W(1+i) and trace back the original

argument using the inverse function.

1, ENTER^, XEQ “ZWL“ -> 0.657+J0.325

ZAWL -> 1.000+J1.000

Another version using SOLVE is listed in section 12.2, with slightly more accurate results , but

significantly slower execution and a few trouble spots (near 1/e and -1/e).

1 LBL "ZWL"

2 Z=0?

3 GTO 00

4 ZSTO (00)

5 E

6 +

7 Z=0?

8 ISG Y(2)

9 ZLN

10 FIX 8

11 LBL 01

12 ZREPL

13 ZNEG

14 ZEXP

15 ZRCL (00)

16 Z*

17 Z-

18 Z<>W

19 E

20 +

21 Z/

22 Z-

23 Z=WR?

24 GTO 00

25 GTO 01

26 LBL 00

27 FIX 3

28 ZAVIEW

29 END

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 65 of 124

11. Complex Means, Elliptic integrals and DFT.

This section covers the MCODE functions to calculate Arithmetic, Harmonic and Geometric single Means

on a set of data, plus the dual means AGM and GHM of two complex arguments. These are related to
the Elliptic Integrals, also obtained via the Hypergeometric function and other dedicated formulas.

Table 10.1. Complex Means Functions.

ZAMN Complex Arithmetic Mean Control word in X bbb.eee

ZHMN Complex Harmonic Mean Control word in X bbb.eee

ZGMN Complex Geometric Mean Control word in X bbb.eee

ZAGM Complex Arithmetic-Geometric Mean Arguments in Z, W Does LastZ

ZGHM Complex Geometric-Harmonic Mean Arguments in Z, W Does LastZ

For the single means the data is expected to be stored in a contiguous set of Compex Data registers,
ZRbbb to ZReee. You can use the utility ZINPT to populate those registers. The functions require the

control word in the X-register to define the register range for the calculation.

Example1. Calculate the three single means for the set of complex values stored in the following data

registers: ZR00 = -1 – i ; ZR01 = 1 + i ; ZR02 = 2 + 2i ; ZR03 = 3 + 3i

0.003, ZF$ “ZAMN” => 1.250(1+J)
0.003, ZF$ “ZHMN” => 4.800(1+J)

0.003, ZF$ “ZGMN” => 2.213+J0

For the dual means, the same definitions for real numbers hold in the complex plane. There’s no special

considerations to the Arithmetic and harmonic means of complex arguments, but since the n-th root is
used in the Geometric mean, it’d have a multi-value result. This becomes of singular importance in the

calculation of the arithmetic-geometric mean of two values, as the convergence has many different
paths – all leading to different final results.

The implementation uses the following criteria for chosen value of the geometric mean, c= sqr(ab)
(see: https://www.math.leidenuniv.nl/scripties/carls.pdf): if it is the “correct” square root for the
geometric mean step, then Im[c/(a+b)] is strictly positive (i.e. > 0), otherwise replace c with -c.
Furthermore this imposes the condition that Im(c) and Im(a+b) have the same sign.

Example 2. Calculate the dual means AGM and GHM for the complex pair: z= 2-4i and w= -3+i

4, CHS, ENTER^, 2, ZENTER^ 2-J4
1, ENTER, 3, CHS, XEQ “ZAGM” => -1.343-J2.146

4, CHS, ENTER^, 2, ZENTER^ 2-J4

1, ENTER, 3, CHS, ZF$ “ZGHM” => -4.268-J3.604

Which verifies the known relationship:

https://www.math.leidenuniv.nl/scripties/carls.pdf

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 66 of 124

11.1 Complex Elliptic Integrals.

Table 10.2. Complex Elliptic Integrals.

ZELIP1 Incomplete Elliptic Int. 1st kind Complex Argument in
{Z,Y}, real modulus in X

Needs
SandMath ZELIP2 Incomplete Eliiptic Int. 2nd kind

ZELIPE Complete Ellipt. Int. 2nd kind

Complex Modulus in “Z”

Uses ZHGF
ZELIPK Complete Ellipt. Int. 1st kind

ZELK Uses ZAGM for Complete Ellip.Int. Uses ZAGM

ZELPKE Both Complete Integrals JM Baillard

The Elliptic integrals are covered in several FOCAL programs as shown in the table above. Note that:

• For the Incomplete types the amplitude can be a complex number but the modulus is expected

to be a real value. This method uses dedicated formulas that apply the real expressions on a
repeated basis according to changes of variable , and it requires the SandMath module to be
plugged in as well. Here the function name ZELIP1 corresponds to F(z; m) , and ZELIP2

corresponds to E(z; m).

• for the Complete types (where the amplitude is therefore 90 degrees) the modulus can be a

complex number. Here two methods are available, one based on the hypergeometric function
(slower and requires |modulus|<1), and another based on the complex AGM – faster and

without that restriction.

• No provision is made for the case where both amplitude and modulus are complex numbers.
To check the results you can use the syntax “EllipticF” and “EllipticE” on WolframAlpha using

two arguments for incomplete cases or just one argument for complete cases.

Let’s see a few examples next. Be aware that the execution time can range from long to very long

depending on the case. You can abort the execution pressing the R/S key at any time.

Example1: calculate the complete Elliptic integrals for a = 2+3i

The first thing we notice is that |z|>1, thus the hypergeometric method is not going to converge – so

discard using ZELIPE and ZELIPK. Being based on the AGM method, function ZELK is the faster way
to obtain the 1st. kind resut - but using ZELPKE we can get both results on a single execution as

follows:

3, ENTER^, 2, ZF$ “ZELPKE” => 1.043+J0.630

Z<>W => 1.473-J1.232

Example 2. Calculate the incomplete Elliptic integrals for a= 1-i, m=0.5

1, CHS, ENTER^, CHS, ENTER^, .5, ZF$ “ZELIP1” => 0.804+J1.163

EllipticF(1-i, .5): http://www.wolframalpha.com/input/?i=EllipticF%281-i,+.5%29

1, CHS, ENTER^, CHS, ENTER^, .5, ZF$ “ZELIP2” => 1.128+J0.789

EllipticE(1-i, .5): http://www.wolframalpha.com/input/?i=EllipticE%281-i,+.5%29

http://www.wolframalpha.com/input/?i=EllipticF%281-i,+.5%29
http://www.wolframalpha.com/input/?i=EllipticE%281-i,+.5%29

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 67 of 124

Formulas used (from Abramowitz-Stegun, Section 14.4)

Writing z= (phi+ i psi) then we have for the first kind:

Where cot^2 () is the positive root of the quadratic equation:

And similarly for the second kind integral:

where now:

as you can see an elaborate set of equations that requires a relatively long FOCAL program even if
some functions from the SandMath really expedite things significantly. Refer to next page for the

FOCAL program listing as a reference.

The solution is therefore expressed as a linear combination of the real-variable case for the Elliptic
integrals, which are also included in the SandMath as functions ELIPF and LEI1 and LEI2.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 68 of 124

Program Listing: Incomplete Elliptic Integrals. (SandMath required.)

 Data Registers: R00-R08 ; User flag: F1

01 LBL "ZELIP1"
02 SF 01
03 GTO 00
04 LBL "ZELIP2"
05 CF 01
06 LBL 00
07 RAD
08 STO 00
09 RDN
10 STO 01
11 RDN
12 HSIN
13 X^2
14 /
15 RCL 00
16 E
17 -
18 *
19 E
20 STO T(0)
21 RDN
22 QROOT
23 X<Y?
24 X<>Y
25 STO 02
26 RCL 01
27 TAN
28 X^2
29 *
30 E
31 -
32 RCL 00
33 /
34 SQRT
35 ATAN
36 STO 01
37 E
38 RCL 00
39 -
40 RCL 01
41 ELIPF
42 FS? 01
43 GTO 00
44 STO 01
45 RCL 00

46 RCL 02
47 SQRT
48 1/X
49 ATAN
50 ELIPF
51 STO 00
52 ZRCL 00
53 ZAVIEW
54 RTN
55 LBL 00
56 STO 08
57 RCL 00
58 RCL 02
59 SQRT
60 1/X
61 ATAN
62 STO 02
63 SIN
64 X^2
65 *
66 E
67 -
68 CHS
69 STO 03
70 SQRT
71 RCL 00
72 *
73 RCL 02
74 E
75 P-R
76 *
77 *
78 RCL 01
79 SIN
80 X^2
81 *
82 RCL 01
83 SIN
84 X^2
85 STO 06
86 RCL 00
87 SQRT
88 ASIN
89 COS
90 RCL 01

91 SIN
92 *
93 X^2
94 CHS
95 E
96 +
97 SQRT
98 RCL 03
99 *
100 RCL 01
101 E
102 P-R
103 *
104 *
105 RCL 02
106 STO 05
107 SIN
108 *
109 X^2
110 RCL 00
111 *
112 RCL 01
113 COS
114 X^2
115 +
116 ST/ 06
117 ST/ 07
118 RCL 08
119 ST+ 07
120 E
121 RCL 00
122 STO 08
123 -
124 RCL 01
125 LEI2
126 ST- 07
127 RCL 08
128 RCL 05
129 LEI2
130 ST+ 06
131 ZRCL 03
132 ZAVIEW
133 END

Granted, this listing doesn’t have much of a 41Z flavor to it since it really operates on real variable

functions. Pulling all stops with the aid of the SandMath we deflect the complex variable with linear

combinations as per the formulas shown before.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 69 of 124

Program Listing: Complete Elliptic integrals

Data registers: R00-R08 ; no user flags.

01 LBL "ZELPKE
02 ZNEG
03 ZSTO 02
04 E
05 STO 08 counter
06 STO 00 real part
07 + 1-z
08 ZSQRT sqr(1-z)
09 ZSTO 01 initial value
10 CLX
11 STO 01 initial z0 = (1+0i)
12 LBL 01
13 ZRCL 00
14 ZRCL 01
15 Z-
16 2
17 ST/ Z
18 / arithmetic mean
19 Z^2 AM^2
20 2
21 RCL 08 k
22 Y^X 2^k
23 ST* Z
24 *
25 ZST- 02
26 ZRCL 00
27 ZRCL 02 -z - (2^k *AM^2)
28 Z+
29 2
30 ST/ Z
31 / halves it
32 ZSTO 03
33 ZRCL 01

34 ZRCL 00
35 Z*
36 ZSQRT Geometric Mean, GM
37 ZSTO 01
38 ZRCL 03
39 ZSTO 00
40 CLX
41 SIGN
42 ST+ 08
43 RCL 08
44 8
45 X>Y?
46 GTO 01 -63 bytes
47 ZRCL 00
48 0
49 2
50 ST* Z
51 * doubles it
52 ZINV
53 ZPI* more accurate
54 ZSTO 00
55 ZRCL 02
56 2
57 ST/ Z
58 / halves it
59 E
60 +
61 Z*
62 ZSTO 01
63 ZRCL 00
64 ZAVIEW
65 END

Upon completion both complete integrals of the 1st and 2nd kinds are left in the complex stack levels Z

and W. They’re also saved in ZR00 and ZR01 respectively.

Note.- Many of these functions appear on CAT’2 as M-Code entries, instead of as FOCAL programs. This
is achieved by using a clever technique shown by W. Doug Wilder (author of the BLDROM), which

allows cleaner and convenient program listings (no ugly “XROM” description before the program title).

These programs however cannot be copied into main memory using COPY. Another drawback is that
frequently they are interpreted as PRIVATE by the 41 OS, nor could they be “looked-up” using GTO +

global LBL, since there’s no global LBL for them.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 70 of 124

11.2 Complex Discrete Fourier Transform {[ZDFT], [ZIDFT[}.

An interesting subject on its own right, the Discrete Fourier Transform has had little coverage on the 41
platform – perhaps the single exception being JM Baillard’s Spectral Analysis pages. A reason for this

scarcity may be the slow CPU speed, rendering the applicability to just academic cases for small sets of
data. The advent of the 41CL and or course SW emulators make this less of an issue, as the examples

below will show.

On the 41Z Deluxe the direct and inverse DFT are implemented entirely as MCODE functions. The “n”

data points are expected to be in contiguous Complex Data registers, starting with ZRbbb to ZReee.
Then you enter the control word “bbb.eee” - complex indexes - in the X register and call the function.

You can use ZINPT to enter those values in memory.

When the execution completes the transformed data values are placed in the following block of

Complex data registers {ZR(eee+1) to ZR(eee+n)}, and the new control word is left in X – so you can
use ZOUPT to review the results.

This implementation just scratches the surface of the topic. It uses the straight-forward definition for

the transform (not fast algorithms like in the FFT case). The code however has several shortcuts to

accelerate the calculations when any of the indexes are zero – which results in an exponential value
equal to one. See the formulas below for the direct (left) and inverse (right) cases.

Unavoidably rounding errors are the reason that some result values won’t show as integers. This is an
inherent limitation of the 10-digit accuracy, which unfortunately can’t be extended to 13-digit in many

areas despite being written in MCODE.

Example. Calculate the DFT for the set of values in the left colum below. (see application at:
http://calculator.vhex.net/calculator/fast-fourier-transform-calculator-fft/1d-discrete-fourier-transform).

To obtain the original sample (assuming complex regs C01 – C08 were used) you can do:

18,002016, REGMOVE, 1.008, XEQ ”ZIDFT”

A sample size of 8 complex values takes about 25 seconds to complete on a normal-speed HP-41, and

just shy of 1 second on the 41CL at Turbo-50; not bad for such a venerable machine.

http://calculator.vhex.net/calculator/fast-fourier-transform-calculator-fft/1d-discrete-fourier-transform

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 71 of 124

The FOCAL program below is a rough equivalent of the MCODE function. Execution times for this

program are about four to five times longer than the MCODE counterpart.

01 LBL "ZDFT"

02 CF 01
03 GTO 00

04 LBL "ZIDFT"

05 SF 01

06 *LBL 00

07 STO 00 N
08 E3/E+

09 STO M(5) j,00N
10 *LBL 01 outer loop

11 VIEW M(5)
12 RCL 00 N

13 STO N(6)

14 E3/3+
15 STO O(7) k,00N

16 RCL 5(M) j,00N
17 INT j

18 ST+ N(6) dest: ZR(N+j)

19 E
20 - j-1

21 PI
22 *

23 ST+ X(3) 2p.(j-1)

24 RCL 00 N
25 / 2p.(j-1)/N

26 STO 01
27 CLZ

28 ZSTO IND N(6) reset destination

29 *LBL 02 inner loop
30 RCL 0(7) k,00N

31 INT k
32 E

33 - k-1

34 RCL 01 2p.(j-1)/N
35 * 2p.(j-1)(k-1)/N

36 FC? 01
37 CHS

38 E
39 P-R

40 ZRC* IND O(7)

41 ZST+ IND N(6)
42 ISG O(7) next k

43 GTO 02 loop back
44 FC? 01

45 GTO 00

46 ZRCL IND 01
47 RCL 00

48 ST/ Z
49 /

50 ZSTO IND 01

51 *LBL 00
52 ISG M(5) next j

53 GTO 01 loop back
54 END

The functions will check that enough data registers are available. If not, the “NONEXISTENT” message

will be presented; adjust the size and try again. Make sure complex data register ZR00 is not used to

store the sample – which must start at ZR01. This is because (real) data registers R00 and R01 are
used for scratch calculations by these functions.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 72 of 124

12. Complex General Methods.

Most of the following functions are complex versions of general methods, included either to illustrate

actual programming of the complex number functions of the module or to provided a parallel

environment to the real-variable case.

 Function Description Author

 ZMTV Multi-valued functions ÁM

 ZSOLVE Solves f(z)=0 by secant method ÁM

 ZNWT Complex Step (Real) Differentiation ÁM

 ZHALL Solves f(z)=0 by Halley’s method ÁM

 ZDERV Complex 1st & 2nd Deriviatives Greg McClure

 ZCF2V Complex Continued Fractions Greg McClure

 ZCSX Fresnel Integrals. JM Baillard

 ZKLV1 Weber & Anger functions JM Baillard

12.0 Real Functions as Complex Extensions { ZCSX , ZKLV1 }

Here’s an interesting approach to the calculation of some real-variable functions, treated as the real
and imaginary parts of a complex extension that uses complex-variable arguments. Two examples are

included:

1. The Kelvin functions of 1st kind, ber(n, x) & bei(n, x); and
2. The Fresnel Integrals, C(x) and S(x)

The expressions are based on the hypergeometric function, which also in the complex variable

becomes a real power horse of high applicability for the programming of the routines.

bern(x) + i bein(x) = (x (i-1)/sqrt(8))n 0F1(n+1 ; i x2/4) / (n+1)

c(x) + i s(x) = x 1F1(1/2 ; 3/2 ; i  x2/2)

Note that the input parameters are real values, and thus are expected to be in the real stack X- and

Y- registers. The output will show a complex number, where it’s to be understood it reflects the two
solutions arranged as real and imaginary parts.

Example1: Calculate the Kelvin functions for x=  and n=sqrt(2)

2, SQRT, PI, ZF$ “ZKLV1” -> “ RUNNING…” => -0.674-J1.597

FIX 9 for bersqrt(2) () => -0.674095956

X<>Y for beisqrt(2) () => -1.597357212

Example2: Calculate the Fresnel Integrals for x= 1.4

1.4, ZF$ “ZCSX” -> “RUNNING…” => 0.543+J0.714

FIX 9 for C(1,4) => 0.543095784
X<>Y for S(1.4) => 0.713525077

Note that x must remain "small", say x < 2. For x = 3 , the errors are of the order of 10 -6 and the

results are meaningless with x = 4

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 73 of 124

12.1 Multi-valued Functions. { ZMTV }

ZMTV Multi-valued functions

This program calculates all possible values for the multi-valued functions, including the n different Nth.

roots of a complex number, all the inverse trigonometric and hyperbolic, plus the logarithm itself
(source of all the multi-valued scenarios).

Due to the 64-function limit of the 41 ROM FAT structure. these routines are all part of a common

entry into the module catalog. To access it you use the ZNEXT prompt, followed by the XEQ key –

 i.e:

[Z], [“A”], [SHIFT], [“K”]

When invoked, the program prompts a menu of choices as follows:

A – ASIN B – ACOS C: Nth. Root D: ATAN E: Ln

a – HSIN b.- HACOS d.- HATAN

Or more succinctly:

For each case the program will calculate the principal value followed by all the other values with each
subsequent pressing of [R/S]. Remember that the top keys need to be free from user assignments for

this scheme to work, as per the 41 OS conventions.

All trigonometric functions expect z into the Z level of the complex stack. Data entry is the same for

all of them except for the n-th root, which expects N in the real-stack register X, and z in Z. Only the
first N values will be different, running into cyclical repetition if continued.

This is a simple program, mostly written to document an example for the 41Z functions. Use it to get
familiar with these concepts, and to understand fully the NXT function set as well.

Note that in version 9L the FAT entry for ZMTV was removed – the same functionality exists

accessed via the launcher menus. Refer to the following sections for details.

Example: Obtain all values of ASIN [Sin(1+j)]

1, ENTER^, ZSIN -> 1,298+j0,635
ZMTV -> “S:H C:H N: T:H L:”

 A -> 1,000+j1

R/S -> 2,142-j1
R/S -> 7,283+j1

R/S -> 8,425-j1

etc…

Alternatively, using the NXTASN function:

Note that here we start with the first value of the function, i.e. 1+j

1, ENTER^, NXTASN -> 7,238+j1

Z<>W -> 2,142-j1
NXTASN -> 8,425-j1

NXTASN -> 14,708-j1

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 74 of 124

Program listing.- Alternative older version, superseded in revision 4L.

Note the use of flag 22 for numeric entry: the catalog of functions will display continuously until one
choice is made, (expected between 1 and 8), and all initial prompting will be skipped.

1 LBL "ZMTV" 48 LBL 93 95 LBL 92

2 CF 22 49 ZASIN 96 ZHACOS

3 LBL 20 50 ZSTO 00 97 GTO 07

4 "FCN#.=? 1-8 51 ZAVIEW 98 LBL 96

5 AVIEW 52 E 99 ZHATAN

6 PSE 53 STO 02 100 LBL 06

7 PSE 54 LBL 03 101 ZAVIEW

8 FC? 22 55 ZRCL 00 102 PSE

9 GTO 90 56 ZNEG 103 PI

10 INT 57 ZSTO 00 104 +

11 ABS 58 RCL 02 105 GTO 06

12 90 59 PI 106 LBL 97

13 + 60 * 107 ZLN

14 RDN 61 + 108 LBL 07

15 SF 25 62 ZAVIEW 109 ZAVIEW

16 GTO IND T 63 PSE 110 PSE

17 GTO 20 64 E 111 NXTLN

18 LBL 90 65 ST+ 02 112 GTO 07

19 CF 21 66 GTO 03 113 LBL 98

20 "1:- ZACOS" 67 LBL 91 114 CF 00

21 AVIEW 68 ZACOS 115 "N=?"

22 PSE 69 ZSTO 00 116 PROMPT

23 "2:- ZACOSH" 70 ZAVIEW 117 ABS

24 AVIEW 71 E 118 INT

25 PSE 72 STO 02 119 X=0? zeroth. Root?

26 "3:- ZASIN" 73 LBL 01 120 RTN

27 AVIEW 74 ZRCL 00 121 STO 00

28 PSE 75 RCL 02 122 E

29 "4:- ZASINH" 76 ST+X 123 - N-1

30 AVIEW 77 PI 124 STO 01

31 PSE 78 * 125 X=0?

32 "5:- ZATAN" 79 STO 03 126 SF 00 unit root?

33 AVIEW 80 + 127 E

34 PSE 81 ZAVIEW 128 + N

35 "6:- ZATANH" 82 PSE 129 1/X 1/N

36 AVIEW 83 ZRCL 00 130 Z^X main value

37 PSE 84 ZNEG 131 SF 21

38 "7:- ZLN" 85 RCL 03 132 ZAVIEW

39 AVIEW 86 + 133 FS?C 00

40 PSE 87 ZAVIEW 134 GTO 08

41 "8:- Z^1/N" 88 PSE 135 LBL 05

42 AVIEW 89 E 136 RCL 00

43 PSE 90 ST+ 02 137 NXTNRT

44 GTO 20 91 GTO 01 138 ZAVIEW

45 LBL 95 92 LBL 94 139 DSE 01

46 ZATAN 93 ZHASIN 140 GTO 05

47 GTO 06 94 GTO 07 141 LBL 08

142 CF 21

143 END

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 75 of 124

 12.2 Solution to f(z)=0. { ZSOLVE , ZHALL }

The next application uses the Secant Method to obtain roots of a complex equation, given two
estimations of the solution. A general discussion on root-finding algorithms is beyond the scope of

this manual – this example is intended to show the capabilities of the 41Z module, in particular how
programming with complex numbers becomes as simple as doing it for real numbers using the native

function set.

See the following link for further reference on this subject (albeit just for real variable):

http://en.wikipedia.org/wiki/Secant_method

The secant method is defined by the recurrence
relation:

which will be calculated until there’s no

significant contribution to the new value – as

determined by the function Z=WR?.

Program listing:-

As it’s the case with this type of programs, the
accuracy of the solution depends of the display

settings, and the convergence (i.e. likelihood to
find a root) will depend on the initial

estimations.

The program works internally with 8-digit
precision, therefore will largely benefit from the turbo-mode settings on V41 to dramatically reduce
the execution time.

http://en.wikipedia.org/wiki/Secant_method

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 76 of 124

User flag 06 is for subroutine usage: when set, the data input will be skipped. In that case the
relevant data is expected to be in the appropriate registers, as follows:

ZR03= Initial estimation z1,

ZR04 = initial estimation z2

R12 = Function’s name,
FIX set manually to required precision.

Example 1.- Calculate one root of the equation: Sinh(z) + z^2 + pi = 0

Which we easily program using 41Z functions as follows:

LBL “ZT”, ZHSIN, LASTZ, Z^2, Z+, PI, +, END.

Using the initial estimations as z0=0, and z1=1+i, we obtain:

Root = -0,27818986 + j 1,81288037

Example 2.- Calculate two roots of the equation: e^(z) = z

programmed as follows: LBL “ZE”, ZEXP, LASTZ, Z-, END

using the estimations: {z0=-1-j & z1=1+j} - note that both roots are conjugated!

Root1 = 0,3181315 + j 1,3372357
Root2 = 0,3181315 - j 1,3372357

Example 3.- Calculate the roots of the polynomials from section 10.1 and 10.3:

P2 = (1+i)*z2 + (-1-i)*z + (1-i)

P3 = z3 + z2 + z + 1

P4 = (1+2i)*z4 + (-1-2i)*z3 + (3-3i)*z2 + z – 1

Re-written using the Honer’s method as follows:

P2 = z [(-1-i) - z(1+i)] + (1-i)
 P3 = z [1 + z(1+z)] +1

 P4 = z {1 + z [(3-3i) – z [(1+2i) - z(1+2i)]] } - 1

Use the following estimations for the P4 example:-

{z0=-1-j ; z1=1+j} for root #1 ; {z0=1+j ; z1=2+2j} for root #2,

{z0=-2j ; z1= 2j} for root #3 ; {z0= 4j ; z1= 5j} for root #4

ZSOLVE Register Usage.

Notice that to avoid register incompatibilities ZSOLVE uses complex registers ZR03 – ZR06 (i.e.
registers R06 – R12). This allows its direct application to calculate zeroes of functions using the lower

register range (which is the typical case), like the Exponential integral and associates, which in turn

all use complex registers ZR00 – ZR02 (i.e. R00 - R05) . This removes the need to use cumbersome
REGMOVE program steps with its memory-hungry control words.

The programs below can be used to obtain the roots as per the examples given before:

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 77 of 124

(1+i)*z2 + (-1-i)*z + (1-i) = 0 (1+2i)*z4 + (-1-2i)*z3 + (3-3i)*z2 + z – 1

1 LBL " Z2" 1 LBL " Z4" 1 LBL " Z4"

2 ZREPL 2 ZREPL 2 ZREPL

3 E 3 2 3 4

4 ENTER^ 4 ENTER^ 4 Z^X

5 Z* 5 1 5 ZENTER^

6 ZENTER^ 6 Z* 6 2

7 -1 7 LASTZ 7 ENTER^

8 ENTER^ 8 Z- 8 1

9 Z+ 9 Z* 9 Z*

10 Z* 10 ZENTER^ 10 Z<>W

11 ZENTER^ 11 -3 11 3

12 -1 12 ENTER^ 12 Z^X

13 ENTER^ 13 CHS 13 ZENTER^

14 CHS 14 Z+ 14 -2

15 Z+ 15 Z* 15 ENTER^

16 END 16 1 16 -1

17 + 17 Z*

 Z3 + Z2 + Z + 1 18 Z* 18 Z+

1 LBL " Z3" 19 1 19 Z<>W

2 ZREPL 20 - 20 Z^2

3 1 21 END 21 ZENTER^

4 + 22 -3

5 Z* 23 ENTER^

6 1 24 CHS

7 + Note the usage of stack-lifting 25 Z*

8 Z* functions to separate entries 26 Z+

9 1 (LASTZ and ZENTER^) 27 Z+

10 + 28 1

11 END 29 -

30 END

Lastly, a few other excellent programs written by Jean-Marc Baillard address the general solution to

the equation f(z)=0. They don’t use functions from the 41Z module, but are mentioned here for their
obviously close related content. The programs can be found at the following link:

http://www.hpmuseum.org/software/41/41cmpxf.htm

http://www.hpmuseum.org/software/41/41cmpxf.htm

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 78 of 124

Application example.- Using ZSOLVE to calculate the Lambert W function.

In this example we see a few techniques applied together, combining the capabilities of the 41Z in a
convenient way. The solution is a direct application of the definition, requiring very simple extra

programming – albeit with the logical slow performance.

The Lambert W function is given by the following functional equation:

z = W(z) eW(z), for every complex number z.

Which cannot be expressed in terms of elementary functions, but can be properly written with the
following short program:

The complex value is expected to be in the Z complex stack level, and

X,Y registers upon initialization. Set the FIX manually for the required

precision.

Because ZSOLVE uses all the complex stack levels and registers 0 to
6 (Note: this was changed in revision 4L – see pg. 59) , the argument

is saved in the complex register 4 – corresponding to real registers 8

and 9, thus a SIZE 10 or higher is required (see register
correspondence map below).

We solve for W(z)=z, using as the function initial estimations the

logarithm of the same argument and the same point plus one,
perhaps not a refined choice but sufficient to ensure convergence in

the majority of cases. Some calculated values are:

This example is not meant to compete with a dedicated program using an iterative algorithm, yet it

showcases the versatility of the approach. The obvious speed shortcomings are diminished when ran
on the 41CL or modern emulators like V41.

The Taylor series of W0 around 0 is given by:

Another technique (somehow a brute-force

approach) would employ this definition to calculate
successive terms of the summation until their

contribution to the sum is negligible. This method

would only be applicable within the convergence
region.

See the following links for further references on the Lambert W function:

http://en.wikipedia.org/wiki/Lambert_W_function
http://mathworld.wolfram.com/LambertW-Function.html

http://en.wikipedia.org/wiki/Lambert_W_function
http://mathworld.wolfram.com/LambertW-Function.html

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 79 of 124

12.3. Newton’s Method with Complex Step Differentiation.

This method is used to calculate real function derivatives, just as a quasi-magical application of

complex variables. Complex step differentiation is a technique that employs complex arithmetic to
obtain the numerical value of the first derivative of a real valued analytic function of a real variable,

avoiding the loss of precision inherent in traditional finite differences. This is then used n Newton’s
method in the usual way.

We're concerned with an analytic function. Mathematically, that means the function is infinitely

differentiable and can be smoothly extended into the complex plane. Computationally, it probably

means that it is defined by a single "one line" formula, not a more extensive piece of code with if
statements and for loops.

Let F(z) be such a function, let x0 be a point on the real axis, and let h be a real parameter.

Expand F(z) in a Taylor series off the real axis.

F(x0+ih)=F(x0)+i.hF’(x0)−h2F’’(x0)/2! – ih3F(3)/3!+...

Take the imaginary part of both sides and divide by h

. F’(x0)=Im(F(x0+ih))/h+O(h2)

Armed with the 41Z arsenal of functions it’s very likely that your real function can be programmed as
an equation in the complex variable too. Then all it takes is to calculate the value of said complex

function in a complex point close to the real argument x0, offset by a very small amount in the

imaginary axisih.The program expects the program name in ALPHA and the values of h and x0 in the

Y,X stack registers, and it returns the real derivative value in X. it uses data registers R00 to R02.

01 LBL "ZNWT"

02 ASTO 02

03 ZSTO (00)
04 LBL 00

05 FS? 10

06 VIEW 00
07 ZRCL (00)

08 XEQ IND 02
09 X<>Y

10 /
11 RCL 01

12 *
13 ST- 00

14 RND

15 X#0?
16 GTO 00

17 RCL 00
18 END

What’s remarkable is that with just one execution of the complex function we calculate both the real
function’s value (the real part) and its derivative (the imaginary part with correction) at the same

time. Note also the clever use of complex data register C00 to store z0 = x0 +ih, and then how it
keeps calculating the complex function value until two successive iterations are equal for the current

FIX selected in the calculator.

Something’s remarkable when the root-finding routine is almost shorter than the equation use to

program the function!

Time for some examples. The first one just a simple polynomial to try our hand with the new method,

taken from the MoHPC forum: https://www.hpmuseum.org/forum/thread-6667.html

https://www.hpmuseum.org/forum/thread-6667.html

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 80 of 124

Calculate the three roots of the third degree polynomial: x³–x²–x+0,5 = 0

We program the equation as shown below:

01LBL “Z3”
02 Z^3

03 LASTZ
04 Z^2

05 Z+

06 Z-
07 .5

08 +
09 END

And type:

ALPHA, “Z1”, ALPHA
,01, ENTER^, 0, XEQ “ZNWT” => 0.40301587

.01, ENTER^, 2, XEQ “ZNWT” => 1.45174468

.01, ENTER^, -2, XEQ “ZNWT“ => -0.85476055

And then a more elaborate example adapted from the seminal reference:

https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/

The blog uses the function F(x) given below, which does not have any real roots:

For our purposes let’s calculate the roots of, say g(x) = F(x) – 

1. LBL “Z2”

2. ZEXP
3. LASTZ

4. ZSIN

5. LASTZ
6. ZCOS

7. 3
8. Z^X

9. Z<>W

10. 3
11. Z^X

12. Z+
13. Z/

14. PI
15. -

16. END

And type:

ALPHA, “Z2”, ALPHA

,01, ENTER^, 1, XEQ “ZNWT” => 0.79830245

https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 81 of 124

12.4 Successive Approximations Method. { ZSAM }

The next application uses the successive approximation method to obtain the roots of a system of n

non-linear equations, provided that the equations can be written as an explicit form of each variable.
This is usually doable, but not always possible, and even when it is the method is slow – but should

be a reliable approach provided that sensible initial guesses are provided.

The program includes data entry and results output routines, i.e. a classic “driver” structure for

additional convenience. The core routine is adapted from JM Baillard’s FNZ posted at :
http://hp41programs.yolasite.com/approx.php

Some modifications to the original core routine FNZ were required to adjust the register mapping to

the 41Z convention. Using native 41Z functions also resulted in a code reduction, which is always a
good thing.

Example. Let’s solve the system of the two equations below:

z1 = (z1^2 - z2)^1/3 ,
z2 = (z2^2 - z1)^1/4

Programmed as follows:

01 LBL "Z1=" 11 LBL "Z2="

02 ZRCL 01 12 ZRCL 02

03 Z^2 13 Z^2

04 ZRCL 02 14 ZRCL 01

05 Z- 15 Z-

06 3 16 4

07 Z^1/X 17 Z^1/X

08 RTN 18 END

Using (1+i) as initial guesses for both z1 and z2, the results are obtained in a few seconds on the

41-CL, or with an emulator in Turbo mode.

z1 = R02 + i R03 = 1.038322757 + 0.715596476 i

z2 = R04 + i R05 = 1.041713085 - 0.462002405 i

The program listing is provided below.

LBL "ZSAM"

SIZE?

"N=?"
PROMPT

STO 00

3
*

E
+

X>Y?
PSIZE

XEQ 00

RCL 00
E3/E+

ZINPT

*LBL 01
VIEW 02

CLA
RCL 00

ST+ X

STO M
*LBL 02

RCL 00
ST+ X

E
+

RCL M

+
RCL IND X

RDN

XEQ IND T
ZENTER^

ZRCL IND M
Z-

ZMOD

ST+ N(6)
DSE M(5)

GTO 02
X<>N

E-8
RCL 00

*

X<Y?
GTO 01

RCL 00

E3/E+
ZOUPT

RTN
LBL 00

RCL 00

ST+ X
2.1

+
STO 02

RCL 00
E3/E+

STO 01

AON
CF 23

*LBL 05

"F#"
ARCLI 01

" |-? "
ARCL IND 02

STOP

FS?C 23
ASTO IND 02

ISG 02
ISG 01

GTO 05
AOFF

END

http://hp41programs.yolasite.com/approx.php

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 82 of 124

Comments.

E3/E+ is a shortcut for the sequence { 1E3, /, 1, +} and ARCLI 01 is the short form for { CF 29, FIX 0,

ARCL 01, FIX 3 SF 29 } – or other combination using functions like AIP, ARCLI, or AINT.

Note how ZRCL is happy using indirect stack arguments – written as non-merged program steps, which

are automatically added by the function itself when entered in the program.

Because registers M and N are used, the execution should not be done using the single-step – as that
will overwrite these registers with the intermediate results of the complex functions (which is not done

in running mode).

Note that to call the respective equations, we first get the global label name in the X-register using the

RCL IND X step; then do RDN and XEQ IND T. Could we have used XEQ IND X directly? It turns out not
really, because surely the equation routines will use the complex Z-Stack, and that will complain if the

current content of the {X,Y} registers cis Alpha data. There’s no real reason for this behavior, sunt so
far that’s how the omplex buffer reacts – thus the work-around using the T register for the call.

See below the graphics of both functions (real and imaginary parts). The solution of the system would

represent where both real parts and both imaginary parts intersect.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 83 of 124

12.5 Function Derivatives. { ZDERV } (by Greg McClure)

The ZDERV function calculates the 1st and 2nd derivatives of a global function defined by the user
(and thus visible via Catalog 1). The function needs to be continuous thru the range around the value

at which the derivatives of the function are desired. The program uses data registers {R00-R08} as
follows:

• ZR00 (R00/R01) is the summing register for the first derivative partials calculated each pass.
It should be left alone (read only).

• ZR01 (R02/R03) is the summing register for the second derivative partials calculated each

pass. It should be left alone (read only).

• ZR02 (R04/R05) is the current Z for calculation by routine pointed to by alpha for XEQA. It

was initialized to the value entered by the user in X, Y (and also in complex Z). It is
modified by ZDERV each step, so it is the next value for the user routine when called. It is

up to the user program to decide when to use the value (it is not required to be saved by the

user if not needed at the beginning of the user program this way). It should be considered
read only.

• ZR03 (R06/R07) is the complex step size ZS entered by the user in complex stack level W. It
should be left alone (read only).

• R08 is initialized to 0 and contains the current step number (0 to 10). It is used by the logic
to know when to go from Z+5*StepSize to Z-5*StepSize (right after handling step #5) and

when to stop (right after step#9, when it increments to 10). So, for example, if z = 1+0i

and ZS = 0.3+0i, the sampling will be: 1, 1.03, 1.06, 1.09, 1.12, 1.15, 0.85, 0.88, 0.91, 0.94,
0.97 (each wit h +0i) for the 10 points. Again it should be left alone (read only).

• So any of registers R00 thru R08 shouldn’t be disturbed by the user program. As long as the
user program name is 6 or less characters, it can be ASTO’d / ARCL’d by the program if

required. The user program can use ANY of the stack registers and any of the complex stack

registers, as long as the final result ends up in X,Y. Never mind that it is duplicated in
complex Z, as it should be there if followed 41Z protocol for the program.

• Note that if the FOCAL user program contains high-level math complex functions (such as
ZGAMMA) then its LBL name should also be stored in a separate data register, say R09. This

is needed because the more complex functions make internal usage of the ALPHA registers,

which therefore would be compromised. Should that occur you’re likely to get a
“NONEXISTENT” error message when attempting the execute the user program from within

ZDERV.

Besides the user function name in ALPHA, the program takes two input values, both of them complex:
the point where the derivatives are to be evaluated, and the complex step size to use for the

derivative evaluation formula (this is a measure of the distance between points sampled). When

developing this program, many formulas were available to use… this program uses the 10-point
formulas developed by Jean-Marc Baillard.

The formulas used are exact for any complex polynomial of degree < 11 : - f(x+k.h) is denoted fk to

simplify these expressions -

df/dx = (1/2520.h).[2100.(f1 - f-1) - 600.(f2 - f-2) + 150.(f3 - f-3) - 25.(f4 - f-4) +

+ 2.(f5 - f-5)] + O(h10)

d2f/dx2 = (1/25200.h2).[-73766 f0 + 42000.(f1 + f-1) - 6000.(f2 + f-2) + 1000.(f3 + f-3

)

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 84 of 124

 - 125.(f4 + f-4) + 8.(f5 + f-5)] + O(h10)
The implementation of ZDERV also makes use of a hidden function, ZDRTN. It is NOT designed to

be used in the user function created, which only need RTN or END to terminate the FOCAL code that
defines them. Why then is XQRTN needed? The operating system normally does not allow returning

to MCODE from FOCAL programs. So to overcome this restriction ZDERV jumps to a mini-FOCAL
program that contains ZDRTN to execute the user function and return back to the ZDERV MCODE

after doing a real RTN.

All this is transparent to the user, who needs only to provide the function name in ALPHA and the
input values in the W- and Z- complex stack levels as described above. The execution ends with the

fisrt derivative value in both complex stack level Z and ZR00, and the second derivative value in both
complex stack W and ZR01.

Example 1. Derivatives of SIN

Let’s say we want to find the derivative of f(z) = sin(z) at z=1. First we need to create a Global label

program to define the function (as it cannot use mainframe function names). Note that there’s no
need to preserve the routine name in R09 as ZSIN does not use the ALPHA registers internally.

01 LBL “SINZ”
02 ZSIN

03 END

Let’s try a step value of .03 (so the points sampled will be (.85, .88, .91, …, 1.12, 1.15).

Type: 0, ENTER^, .03, ZENTER^ => 0.030+j0

0, ENTER^, 1, XEQ “ZDERV_ “SINZ” ALPHA => “RUNNING...“

On return, both ZR00 and Z contain 0.540302302 (the actual 1st. derivative is 0.54032306) and ZR01

and W contains -0.841470900 (the actual 2nd derivative is -0.841470985).

Testing the sine function for other values and step sizes is easy if you use the explicit derivatives,

f’(sin(z)) = cos(z), and f’’(cos(z)) = -sin(z), that is to say, you can test the values obtained by this
program for this example by taking the cos(z) and –sin(z) for the actual 1st and 2nd derivative values.

Example 2.- Calculate f '(1+i) & f "(1+i) for: f(z) = exp(-z^2)

We program the function using any global LBL , 6 characters or less

01 LBL "EX2"

02 Z^2
03 ZNEG

04 ZEXP

05 END

If we choose h = 0.03(1+i) as step-size we type:

0.03, ENTER^, ZENTER^ => 0.003(1+j)

1, ENTER^, 1, XEQ “ZDERV_ “EX2” ALPHA => “RUNNING...“

f '(1+i) = -0.986301184 + j2.650888353; and Z<>W

f "(1+i) = 8.106657849 - j1.510648148 ;

Choosing the best h-value is not easy but h ~ 0.03 (in both axis) "often" produces good results. Be

aware that unfortunately the better step-size for the first derivative may not be a good one for the
second, and vice-versa.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 85 of 124

Example 3. Cubic Polynomial Derivatives.

With the following coefficients stored in ZR06-ZR09 (i.e. R12-R19), calculate the derivatives in z=1+j

of the cubic polynomial. Use Zstep=0.1+0.1j. The results should be -3+j17 and 4+j16 for the 1st and
2nd derivatives respectivey, as calculated by ZDP1 and ZPD2.

ZR06 = 1+j - third degree coeff.
ZR07 = 2+2j - second degree coeff.

ZR08 = 3+3j - first degree coeff.
ZR09 = 4+4j - independent term.

We start by programming the function under the user label “ZP69”, taking advantage of the ZPL

function to do the polynomial evaluation. Note that this uses the ALPHA register M internally for

scratch, thus we need to preserve the global program name in another data register and restore it
after the evaluation is done. We’ll use R09 for this purpose. Note as well that the usage of storate

registers must be compatible with ZDERV requirements, which uses ZR00 to ZR03

01 LBL “ZP69”

02 ASTO 09 LBL name preserved
03 ZRCL 02 initial argument
04 NOP to separate numeric steps
05 6.009 control word
06 ZPL evaluates polyn

07 CLA clear scratch
08 ARCL 09 routine LBL restored

09 END

Then we enter the function parameters as usual:

0.1, ENTER, ZENTER^, => 0.100(1+J)

1, ENTER^, 1, XEQ “ZDERV_ “ZP69” ALPHA => “RUNNING...“

Which shortly returns with the exact solutions in the complex stack: -3+J17; Z<>W 4+J16

Example 4. Derivatives of Gamma function.

Let’s now do a high-level math example using ZGAMMA, which also messes with the ALPHA registers

thus we need to save the global label in R09 in this case as well. Let’s calculate the derivatives in the
point z0 = 1+i, also using a step size zh = 0.1 (1+j)

01 LBL “GAM”
02 ASTO 09

03 ZGAMMA
04 CLA

05 ARCL 09

06 END

0.1, ENTER^, ZENTER^, => 0.100(1+J)

1, ENTER^, XEQ “ZDERV_ “GAM” ALPHA => 0.2140+J0.5215

Z<>W => -0.4338-J0.1875

The first derivative should equal ZPSI * ZGAMMA, and it does!,

1, ENTER^, ZGAMMA, ZSTO 02, LASTZ, ZPSI, ZRC* 02 => 0.2140+J0.5215

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 86 of 124

Which can also be verified using WolframAlpha, see:

http://www.wolframalpha.com/input/?i=gamma%281%2Bi%29*digamma%281%2Bi%29

And similarly for the second derivative using the tri-gamma function:

http://www.wolframalpha.com/input/?i=gamma%281%2Bi%29*%28trigamma%281%2Bi%29+%2B
%28digamma%281%2Bi%29%29^2%29

Example 5: Halley’s Method.

This example clearly illustrates the usefulness of ZDERV – applied to the Halley’s method to obtain

the roots of a function. Contrary to the secant algorithm, the Halley’s method only needs one initial
estimation, and the convergence is meant to be faster - reducing so the execution time.

The following FOCAL program lists the code (set FIX as needed for precision):

01 LBL “ZHALL
02 “FNAME?”
03 AON
04 PROMPT
05 ASTO 09
06 AOFF
07 “Z0=”?”
08 PROMPT
09 ZSTO 02
10 .1
11 ENTER^
12 ZSTO 03
13 LBL 00
14 CLA

15 ARCL 09
16 ZRCL 03
17 ZRCL 02
18 ZDERV
19 ZRCL 02
20 XEQ IND 09
21 ZRPL^
22 ZRC* (00)
23 ZDBL
24 ZRCL (00)
25 Z^2
26 ZDBL
27 ZRCL 01
28 ZRUP

29 Z*
30 Z-
31 Z/
32 ZNEG
33 ZRC+ 02
34 ZENTER^
35 Z<> 02
36 Z=WR?
37 GTO 01
38 GTO 00
39 LBL 01
40 ZAVIEW
41 END

http://www.wolframalpha.com/input/?i=gamma%281%2Bi%29*digamma%281%2Bi%29
http://www.wolframalpha.com/input/?i=gamma%281%2Bi%29*%28trigamma%281%2Bi%29+%2B%28digamma%281%2Bi%29%29%5e2%29
http://www.wolframalpha.com/input/?i=gamma%281%2Bi%29*%28trigamma%281%2Bi%29+%2B%28digamma%281%2Bi%29%29%5e2%29

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 87 of 124

12.6 Continued Fractions. { ZCF2V } (by Greg McClure)

Continued Fractions are expressions of the form:

The use of + in the denominator indicates that the remainder of the terms actually are part of that

denominator. So the above expression means B(0) + A(1) / [B(1) + A(2) / [B(2) + A(3) / […]]].

This can be mathematically abbreviated as B(0) + [A(1), A(2), A(3), … ; B(1), B(2), B(3), …] which will

be used here. The number of expressions may or may not be infinite.

Many values are easily expressed as continued fractions. Some examples are:

Tanh(x) = [X, X^2, X^2, X^2, … ; 1, 3, 5, 7, …]

Pi = [4, 1^2, 3^2, 5^2, 7^2, … ; 1, 2, 2, 2, 2, …] (one of MANY representations of Pi)
1 / (e-1) = [1, 2, 3, 4, … ; 1, 2, 3, 4, …] (again one of MANY representations of e)

The simpler form of continued fractions often used are expressions with A(n)=1, therefore of the form:
B(0)+1/(B(1)+) 1/(B(2)+)… 1/(B(n)+)… mathematically abbreviated as: [B(0); B(1), B(2), B(3), …].

For example: e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, …]

The ZCF2V function is designed to calculate a complex continued fraction value. It requires a user

created subroutine that calculates A(n) and B(n) for n >= 1. The function assumes z is available in
ZR01 and n available in R12 for this program, and should leave A(n) in complex stack level “Z” and

B(n) in complex stack level “W” on completion of the user subroutine. The subroutine must be callable

by a global label (of up to 7 characters). The program uses R00 thru R12.

To execute ZCF2V, put the value of B(0) in complex stack level “W”, and the value of evaluation point
z in complex stack level “Z”. Execute ZCF2V to evaluate the continued fraction - which will prompt for

the name of the routine that calculates both A(N) and B(N) and will write it into the alpha register to
evaluate the continued fraction. In a program execution (no prompting) you need to enter the user

program name in ALPHA prior to the ZCF2V step.

Here is an example of use of ZCF2V. Let’s say we want to evaluate the Tanh function mentioned

above. We would create the following program in memory (assume we use the label TT):

01 LBL “ZTH” 11 LBL 01

02 RCL 12 ; get n from R12 09 - ; (n–1) in X
03 1 ; Is it 1? 10 RCL 12 ; get n again
04 X#Y? 11 + ; (2n–1) in X
05 GTO 01 ; No, skip to LBL 01 12 0
06 CLX 13 X<>Y ; make it complex
07 X<>Y ; make it complex 14 ZRCL 01
09 ZRCL 01 ; B(1) = 1+j0 in “W”, 15 Z^2 ; B(n) = (2n – 1)+j0 in “W”,
10 RTN ; A(1) = z in “Z” 16 END ; A(n) = z^2 in “Z”

To evaluate Tanh(1) with B(0)=0 enter the following:

0 , ENTER^, ZENTER^, ENTER^, 1, ZCF2V_ “ZTH ALPHA. -> “RUNNING…”

The answer of 0.761594156 (assuming FIX 9) is displayed in a few seconds. The value returned should
be accurate to at least 9 significant digits.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 88 of 124

Try now to evaluate Tanh(1+i), which answer is 1.083923328 + j 0.271752586:

[Z] 0, ZENTER^, 1, ENTER^, XEQ “ZCF2V_”ZTH ALPHA =>

 RUNNING...“, => 1.0839+J0.2718

Example 2. If f(z) is defined by: b0 = 0.2 + 0.3 i ; an = 2.z + n , bn = z2 + n2 (n > 0) ;
evaluate f(1+2.i). We program the function components as follows:

01 LBL “FZ”

02 ZRCL 01

03 Z^2
04 RCL 12

05 X^2
06 +

07 ZRCL 01

08 2

09 ST* Z

10 *
11 RCL 12

12 +
13 END

Calculated as:

0.3, ENTER^, 0.2, ZENTER^, 2, ENTER^, 1, XEQ “ZCF2V_”FZ” => 1.0846-J0.7498

Register usage for ZCF2V.

First, name of function must be in Alpha (up to 7 chars allowed). The prompting makes that easy for
keyboard usage!

Like it was the case for ZDERV, the user program name must be in the ALPHA register each time the
function is to be evaluated. If the user program contains functions that alter the contents of ALPHA

then you’ll need to restore said user program name as part of the user program itself. Typically you
save it on entry (say in an available data register like R15) and restore it upon completion of the

continued fraction.

• Register ZR00 is the continuing estimate of F(N) and hopefully gets closer and closer to the

real solution (or we wind up with an infinite loop). It should be considered read only.

• Register ZR01 is the saved value of z. The user program that calculates the next A(N) and
B(N) terms can use this value. It should be considered read only.

• Register ZR02 is C(N) from the modified Lentz formula. It should be considered read only.

• Register ZR03 is D(N) from the modified Lentz formula. It should be considered read only.

• Register ZR04 is A(N) saved from the user program. It can be reused by the user program but

will be replaced on reentry to the ZCF2V calculation loop.

• Register ZR05 is B(N) saved from the user program. It can be reused by the user program but

will be replaced on reentry to the ZCF2V calculation loop.

• Register R12 is the current loop count (N). The user program that calculates the next A(N) and

B(N) terms can use this value. It should be considered read only.

If an infinite loop is occurring, pressing R/S should stop the program on the next entry to the user

program. If no infinite loop is occurring, the answer should eventually show up in X,Y (Complex Z).

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 89 of 124

Example 2. Bessel Functions Jn(x) and Yn(x). { JYNX }

This example showcases the use of continued fractions to calculate the Bessel functions of first and

second kinds, Jn(x) and Yn(x), for real values of order and argument. It is a very interesting application

that has the benefit to avoid the limitations of the direct methods when the order and/or argument are
large. Therefore, unlike unlike the counterpart functions in the SandMath, the following program

produces accurate results for large arguments.

You should note that this approach involves solving two continued fractions, one in the complex
domain and another in the real domain – therefore both the 41Z and SandMath modules need to be

plugged in the calculator.

Formulae:

Let ZCF be the complex continued fraction defined by:

ZCF = [(0.5^2 – n^2)/(2x + 2i + (1.5^2 – n^2)/(2x + 4i +))]

And CF be the real continued fraction defined by:

CF= -1/(((2n + 2)/x) - 1/(((2n + 4)/x) -))
D = denominator of CF

Let: p + i.q = -1/(2x) + i .[1 + (1/x) [ZCF] }
And: s = (p - CF - n/x)

then we have the following expressions:

Jn(x) = sign(D). sqrt[(2q/(.x) / ((q^2 + s^2)]

Yn(x) = [s / q] . Jn(x)

Numeric application:

10 ENTER^ XEQ "JYNX" => J10(10) = 0.207486107
X<>Y Y10(10) = -0.359814151 (in 2mn27s)

3.14, ENTER^, 100, XEQ "JYNX" => J3.14(100) = 0.079535723

X<>Y Y3.14(100) = 0.006582327 (in 4mn14s)

The method doesn't work if n is a negative integer. However in that case, if n < 0 we can use the

relations
 Jn = J-n cos n.Pi + Y-n sin n.Pi , and

 Yn = -J-n sin n.Pi + Y-n cos n.Pi

If x < 0 the results are generally complex and won’t be properly calculated by this program.

Data Register Usage.

“JYNX” needs data registers R00 to R13. {R00 - R12} are used by ZCF2V, plus one additional register
(R13) is needed to save the value of the order “N”.

Note that both ZCF2V and CF2V have slightly different conventions as to where the arguments are
stored: in CR01 for ZCF2V, which transtaled to R02 and R03 for the real and imaginary parts. All this is

transparent to the user for this example.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 90 of 124

The Program Listing is shown below. Note the calculation for the p and q factors takes advantage of

the complex result returned by ZCFV, transposing the real and imaginary parts as per the multiplication
by “ï” in the definition formulae:

p = -1/x . [1/2 + Im(ZCF)]
q = [1 + Re(ZCF/x)]

Credits: The original program was written by Jean-Marc Bailalrd, and has been adapted to use the

MCODE implementations of the continued fractions routines. Thanks also to Greg McClure for his

assistance provided for the adaptation.

01 LBL “JYNX”

02 STO 01 x
03 X<>Y

04 STO 13 N

05 “ZCF”
06 CLST

07 ZENTER^
08 0

09 RCL 01

10 ZCF2V
11 RCL 02 x

12 STO 01
13 ST/ Z

14 /

15 E
16 +

17 STO 10 q
18 X<>Y

19 CHS
20 RCL 01 x

21 ST+ X

22 1/X
23 –

24 STO 09 p
25 “CF”
26 0

27 RCL 01 x
28 CF2V

29 CHS

30 RCL 09 p

31 +
32 RCL 13 N

33 RCL 01 x

34 /
35 –

36 STO 11 s
37 RCL 10 q

38 R-P

39 LASTX q
40 ST+ X 2q

41 PI
42 RCL 01 x

43 * .x

44 /

45 SQRT
46 X<>Y

47 /
48 RCL 05

49 SIGN

50 *
51 STO 12

52 RCL 11 s
53 *

54 RCL 10
55 /

56 RCL 12

57 CLD
58 RTN

59 LBL “ZCF”

60 RCL 12 N
61 ST+ X 2N

62 RCL 02 x

63 ST+ X 2x
64 ZENTER^

65 0
66 RCL 12 N

67 0,5

68 –
69 X^2

70 RCL 13 N
71 X^2 N^2

72 –

73 RTN

74 LBL “CF”

75 X<>Y
76 STO 05 Bn

77 X<>Y
78 RCL 02 n

79 RCL 13 N

80 +
81 ST+ X

82 RCL 01 x
83 /

84 -1

85 END

Note that this program is not available in the 41Z Module, but it has been included in the

“Advantage_Math” ROM, a collection of applications using the advanced modules like the 41Z,

SandMath and SandMatrix, sometimes used together .

Bessel functions for complex variable are covered in the next sections of the manual.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 91 of 124

12.7 Bessel and Hankel functions.

This section represents an interesting “tour de force” within the 41Z module – taking the humble 41
system to the realm of true high-level math. Use it or leave it, it’s all a matter of choice – but

programming techniques and valid algorithms are always interesting, despite its obvious speed
shortcomings.

Index Function Description

1 ZJBS Complex Bessel J function First kind

2 ZIBS Complex Bessel I function First kind

3 ZKBS Complex Bessel K function Second kind

4 ZYBS Complex Bessel Y function Second kind

5 EIZ/IZ Spherical Hankel first kind order zero SHK1 (0, z)

6 ZSHK1 Spherical Hankel first kind SHK1 (n, z)

7 ZSHK2 Spherical Hankel second kind SHK2 (n, z)

8 ZANGJ Anger Function J (n, z); n real

9 ZWEBE Weber Function W (n, z); n real

See the paper “Bessel functions on the 41 with the SandMath Module” by the author, for an extensive

description of the (real-number) Bessel Functions on the 41 system. In fact, following the “do it as it’s
done with real numbers” standard philosophy of the 41Z module, the complex versions of these

programs are very similar to those real-number counterparts described in said paper.

The formulae used are as follows:

J(n,z) =  {Uk | k=1,2,….} * (z/2)n / (n+1)
U(k) = -U(k-1) * (z/2)2 / k(k+n)
U(0) = 1

Yn(x) = [Jn(x) cos(n)) - J-n(x)] / sin(n))

Kn(x) = (/2) [I-n(x) - In(x)) / sin(n))]
n # -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ..

Like for the real arguments case, there is one auxiliary functions ZBS#, used to perform intermediate
calculations needed by the main programs: ZJBS, ZIBS (first kind), and ZYBS, ZKBS (second kind).

Other auxiliary functions are:

• ZGEU Euler’s gamma constant as a complex number, and

• HARMN to obtain the harmonic number of a given integer: (uses “-ZSTACK”)

H(n) =  [1/k] |k=1,2…n (*)

The expressions used to calculate the results are different for integer orders (remember the
singularities of Gamma), requiring special branches of the main routines. For that reason two other

functions have been added to the 41Z as follows:

• ZINT? to determine integer condition, and

• ZCHSX to simplify calculation of z*(-1)^k

Both the function order and the argument are complex numbers, which are expected to be on complex
stack levels W (order) and Z (argument) prior to the execution of the function. The result is placed on

the Z-level complex stack.

Below are the program listings for each particular case.-

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 92 of 124

a) Bessel Functions of the first kind. Uses R00 – R08. Uses Flags 0-1

1 LBL ZJBS 48 Z* n

2 CF 00 49 ZRCL 00 n

3 GTO 00 50 RCL M k

4 LBL ZIBS 51 + n+k

5 SF 00 52 LASTX k

8 LBL 00 53 ST* Z k(n+k)

8 CF 01 54 *

8 Z<>W 55 Z/

9 ZINT? is n integer? 56 ZSTO 02 U(k)

10 XEQ 05 57 ZRCL 03 SUM(k-1)

11 Z<>W 58 Z+ SUM(k)

12 ZHALF z/2 59 ZENTER^

13 XROM "ZBS" 60 Z<> 03 SUM(k-1)

14 FS? 01 n integer 61 Z=W?

15 RCL 01 62 GTO 01

16 FS? 01 63 E

17 ZCHSX J(-n, z) = (-1)^n J(n, z) 64 ST+ M k=k+1

18 LBL 04 65 GTO 02

19 ZAVIEW 66 LBL 01

20 RTN 67 ZRCL 00 n

21 LBL 05 68 INCX (n+1)

22 X<0? n<0? 69 CF 02

23 SF 01 70 X<0?

24 ABS 71 SF 02

25 RTN 72 X<0?

26 LBL "ZBS" 73 ZNEG -z

27 Z#0? 74 ZGAMMA

28 GTO 00 75 FC? 02

29 Z=W? 76 GTO 00

30 E 77 LASTZ -z

31 GTO 04 78 ZGNGZ

32 LBL 00 79 Z<>W

33 -ZSTACK running… 80 Z/

34 ZSTO 01 (z/2) 81 LBL 00

35 Z<>W n 82 Z/

36 ZSTO 00 n 83 ZRCL 01 (z/2)

37 E 1 84 ZRCL 00 n

38 ZREAL 1+J0 85 W^Z (z/2)^n

39 ZSTO 02 1+J0 86 Z*

40 ZSTO 03 1+J0 87 END

41 STO M k=1

42 LBL 02 CR00 - n

43 ZRCL 01 CR01 - Z/2

44 Z^2 (z/2)^2 CR02 - Uk

45 ZRCL 02 Uk-1 CR03 - SUM

46 FC? 00 CR04 - result

47 ZNEG

Examples:- Calculate JBS(1+i, -1-i) and IBS(-0.5+i; 1-0,5i)

1, ENTER^, ZENTER^, ZNEG, ZJBS --> -8,889 + j 2,295

1, ENTER^, 0,5, CHS, ZENTER^, ENTER^, 1, ZIBS --> 3,421 + j 1,178

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 93 of 124

b) Bessel functions of the second kind. Uses R00 – R08. Uses flags 0-2

1 LBL "ZB1" SUM{f(n,x)} 1 LBL "ZB2" SUM{g(n,x)}

2 CLZ 2 CLZ

3 ZSTO 02 Jn / In 3 ZSTO 03 reset partial SUM

4 ZSTO 04 SUM 4 RCL 00 ABS(n)

5 STO 01 k=0 5 X=0? n=0?

6 LBL 02 6 RTN skip it

7 XEQ 10 summing term 7 DECX

8 Z=0? x=0? 8 E3

9 GTO 01 ignore term 9 / 0,00(n-1)

10 ZRCL 04 S(k-1) 10 STO 08

11 Z+ S(k) 11 LBL 05

12 ZENTER^ 12 ZRCL 01 x/2

13 Z<> 04 13 RCL 08 k,00(n-1)

14 Z=W? are they equal? 14 INT

15 RTN Final result(s) 15 STO 01 k

16 LBL 01 16 ST+ X 2k

17 E increase index 17 RCL 00 n

18 ST+ 01 k=k+1 18 - 2k-n

19 GTO 02 19 Z^X (x/2)^(2k-n)

20 LBL 10 Function to Sum 20 RCL 00 n

21 ZRCL 01 x/2 21 RCL 01 k

22 RCL 01 k 22 - n-k

23 ST+ X 2k 23 DECX n-k-1

24 RCL 00 n 24 FACT (n-k-1)!

25 + 2k+n 25 RCL 01 k

26 Z^X (x/2)^(2k+n) 26 FACT k!

27 ZENTER^ 27 / (n-k-1)! / K!

28 RCL 01 k 28 ST* Z

29 FACT k! 29 * [**]

30 LASTX k 30 FC? 00 is it Yn?

31 RCL 00 n 31 GTO 00

32 + k+n 32 RCL 01 k

33 FACT (k+n)! 33 ZCHSX (-1)^k * term

34 * k! * (k+n)! 34 LBL 00

35 ZREAL 35 ZRCL 03

36 Z/ k-th. Term 36 Z+

37 FS? 00 is it Kn? 37 ZSTO 03

38 GTO 00 38 ISG 08

39 RCL 01 k 39 GTO 05 (k+1),00(n-1)

40 ZCHSX [term] * (-1)^k 40 ZRCL 03

41 LBL 00 41 FC? 00 i s i t Yn?

42 Z<> 02 ZST+ 02 42 RTN

43 ZRCL 02 43 RCL 00 n

44 Z+ f(k) + SUM(k-1) 44 ZCHSX SUM*(-1)^n

45 Z<> 02 Jn / In 45 END

46 ZENTER^

47 RCL 01 k

48 HARMN H(k)

49 LASTX k Note: functions DECX and INCX

50 RCL 00 n can be replaced by standard

51 + k+n FOCAL sequences:

52 HARMN H(k+n)

53 + H(k)+H(k+n) DECX = 1, -

54 ZREAL INCX = 1, +

55 Z*

56 END

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 94 of 124

1 LBL "ZYBS" Integer Index 48 LBL 05 integer orders

2 CF 00 49 CF 01

3 GTO 00 50 X<0? negative

4 LBL "ZKBS" 51 SF 01

5 SF 00 52 ABS

6 LBL 00 53 STO 00 n

7 ZHALF 54 XROM "ZB2"

8 ZSTO 01 (z/2) 55 ZNEG -[SUM*(-1)^n]

9 Z<>W n 56 ZSTO 03

10 ZINT? 57 XROM "ZB1" to obtain both!

11 GTO 05 58 ZRCL 03

12 Z<>W ZNEG 59 Z<>W

13 XROM "ZBS" Z<>W 60 Z-

14 ZSTO 02 Jn / In XROM "ZBS" J-n (z) 61 ZRCL 01 x/2

15 FS? 00 FS? 00 62 ZLN Ln(x/2)

16 GTO 00 ZNEG -J-n(z) 63 GEU g

17 ZRCL 00 ZSTO 04 64 + g+Ln(x/2)

18 PI ZRCL 00 -n 65 ZRCL 02 J(n,x) or I(n,x)

19 ST* Z ZNEG n 66 Z* [}*J/I(n,x)

20 * ZRCL 01 (z/2) 67 ZDBL

21 ZCOS XROM " ZBS" 68 Z+ K(n,x)/Y(n,x)

22 Z* ZSTO 02 Jn / In 69 FC? 00 i s i t Yn?

23 LBL 00 FS? 00 70 GTO 04 FINAL STEPS

24 ZSTO 04 GTO 00 71 RCL 00 n

25 ZRCL 00 n ZRCL 00 72 INCX (n+1)

26 ZNEG -n PI 73 ZCHSX K(n,x)* (-1)^(n+1)

27 ZRCL 01 (z/2) ST* Z 74 ZHALF

28 XROM " ZBS" * 75 GTO 03 Exit

29 ZRCL 04 ZCOS 76 LBL 04 Yn

30 Z<>W Z* 77 PI

31 Z- LBL 00 78 ST/ Z

32 ZRCL 00 -n ZRCL 04 79 /

33 ZNEG n Z+ 80 FC? 01 negative index?

34 PI ZRCL 00 n 81 GTO 03 Exit

35 ST* Z PI 82 RCL 00 n

36 * ST* Z 83 ZCHSX

37 ZSIN * 84 LBL 03

38 Z/ ZSIN 85 ZSTO 03

39 FC? 00 Z/ 86 ZAVIEW

40 GTO 03 Exit FC? 00 87 END

41 PI GTO 03 Exit

42 2 PI

43 / 2

44 CHS /

45 ST* Z ST* Z

46 * *

47 LBL 03 Exit LBL 03 Exit

The formulae used for integer orders are as follows:

 Yn(x) = 2[γ + Ln x/2] Jn(x) –  (-1)k fk(n,x) –  gk(n,x)

 (-1)n+1 2 Kn(x) = 2 [γ + Ln x/2] In(x) –  fk(n,x) – (-1)n  (-1)k gk(n,x)

gk (n,x) = (x/2)2k-n [(n-k-1)! / k!] ; k=0,2,…(n-1)

fk (n,x) = (x/2)2k+n [H(k) + H(n+k)] / [k! (n+k)!] ; k=0,1,2,…..

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 95 of 124

Example:- Calculate KBS (-0.5+i; 1-0,5i)

1, ENTER^, 0,5, CHS, ZENTER^, ENTER^, 1, XEQ “ZKBS“ → 0,348 + j 0,104

Example:- Calculate YBS (-1,-1)

0, ENTER^, 1, CHS, ZENTER^, XEQ “ZYBS” → - 0,781 + j 0,880

This last example shows how even real arguments can yield complex results.

Example.- Calculate JBS and IBS for (1+2i, -1-3i)

2, ENTER^, 1, ZENTER^
3, CHS, ENTER^, 1, CHS, XEQ “ZIBS“ → 35,813 - j 191,737

2, ENTER^, 1, ZENTER^
3, ENTER^, 1, ZNEG, XEQ “ZJBS“ → - 257,355 - j 12,633

12.7. Hankel and Spherical Hankel functions. { ZSHK1 , ZSHK2 , EIZ/IZ }

With the Bessel functions in the pocket it takes a litte more than a trivial exercise to write a few short
routines to calculate the Hankel and Spherical Hankel functions – both of the first and second kind.

Their defining expressions are as follows:

 ;

These linear combinations are also known as Bessel functions of the third kind, and it’s just an
association of the previous two kinds together. Here the spherical analogues of the Hankel functions

are based on the Spherical Bessel functions as follows:

Example: Calculate HK1 and HK2 of zero order for z= (1+i)

 [Z], [0] , ZENTER^, [1], ENTER^, XEQ “ZSHK1“ => 0,055-J0,254

 [Z], [0] , ZENTER^, [1], ENTER^, XEQ “ZSHK2“ => 1,878-J0,409

Note that fort the zero-th order SHK1 we can also use the EIZ/IZ function, which uses the direct
exponentials formula and therefore comes to the same result in a much shorter time (shown below

with 9 decimal digits):

Re = 0,055396883; Im = -0,254162993

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 96 of 124

These functions are also valid for the non-integer order cases, for example: n= (1+ i) and z= (1+i):

1, ENTER^, ZENTER^, XEQ “ZSHK1” => -0,434-J0,874

Which has a 9-digit accuracy when compared to the Wolfram Alpha result – astonishing if you consider
the long and winding process needed to get to their result – all done behind the scenes.

The FOCAL programs below list the simple code snippets to program the regular (ZHK1 and ZHK2)

and spherical pairs ZSHK1 and ZSHK2. Note that J is obtained during the Y calculation, thus there’s
no need to repeat the execution for it – we retrieve its value from complex register ZR02. Note how

the complex stack performs a vital role in these programs – storing the intermediate results unaffected
by the complex calculations that take place.

01 LBL "ZSHK1" 01 LBL "ZHK1"

02 CF 03 02 SF 03

03 GTO 03 03 GTO 03

04 LBL "ZSHK2" 04 LBL "ZHK2"

05 SF 03 05 CF 03
06 LBL 03 06 LBL 03

07 Z<>W 07 ZYBS

08 ,5 08 FS? 03

09 + 09 ZNEG

10 Z<>W 10 Z*I

11 ZYBS 11 ZRCL 02 JBS

12 FS? 03 12 Z+

13 ZNEG 13 ZAVIEW

14 Z*I 14 END

15 ZRCL 02 JBS

16 Z+

17 ZRCL 01 z/2

18 4

19 ST* Z 2z

20 *

21 ZINV

22 ZPI*

23 ZSQRT

24 Z*

25 ZAVIEW

26 END

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 97 of 124

The plots below show the Spherical Hankel-1 function for orders 1 and 2, for a short range of the real

argument x. Obviously the results are complex as well, thus the real and imaginary parts are plotted
separately.

Complex Keyboard shortcuts.- the Bessel and Hankel functions can be accessed pressing SHIFT

when the NEXT indicator is shown, as per the following sequence:

[Z], [Z], [SHIFT], [SHIFT] -> then [I], [J], for ZJBS and ZJBS or [K], [L] for ZKBS and ZYBS.

The same group can be used to access ZWL & ZAWL (Complex Lambert and its inverse) and EIZ/IZ,
the Spherical Hankel function of first kind and order zero h(1) (0,z)

, then SHIFT:

The key maps below summarizes all the special assignments in the [BSSL] (left) and [NEXT] (right)

groups. Notice that the mnemonics h(1)n and h(2)n correspond to the ZSH1 and ZHS2 functions.
Note as well the inclusion of the “alternative” versions SQRTZ, e^Z and 1/Z in the [NEXT] group – so

you can quickly compare them with the main functions for accuracy and speed.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 98 of 124

12.8. Weber and Anger Functions. { ZANGJ , ZWEBE }

In mathematics, the Anger function, introduced by C. T. Anger (1855), is a function defined as

The Weber function introduced by H. F. Weber (1879), is a closely related function defined by:

The Anger and Weber functions are related by:

so in particular if ν is not an integer they can be expressed as linear combinations of each other. UIf ν is
an integer U then Anger functions Jν are the same as Bessel functions Jν, and Weber functions can be

expressed as finite linear combinations of Struve functions (Hn and Ln).

The expressions used in the 41Z module are based on the Hypergeometric function, therefore use the

ascending series method - as follows:

Jn(z) = + (z/2) sin(90°n) 1F2(1 ; (3-n)/2 , (3+n)/2 ; -z2/4) / ((3-n)/2) / ((3+n)/2)

 + cos(90°n) 1F2(1 ; (2-n)/2 , (2+n)/2 ; -z2/4) / ((2-n)/2) / ((2+n)/2)

and:

En(z) = - (z/2) cos(90°n) 1F2(1 ; (3-n)/2 , (3+n)/2 ; -z2/4) / ((3-n)/2) / ((3+n)/2)

 + sin(90°n) 1F2(1 ; (2-n)/2 , (2+n)/2 ; -z2/4) / ((2-n)/2) / ((2+n)/2)

Note that even if the argument z can be a complex number, this implementation requires the order ν
to be a real value so the dual-complex case is not supported. The input parameters are expected in the

real registers {Z, Y, X}, with the order in the X- register as per the standard 41Z conventions.

Examples. Calculate the weber and Anger functions for ν =, and z=1+i

1, ENTER, 1, PI, ZF$ “ZANGJ” -> “RUNNING...“ => -0.064+J0.041
1, ENTER^, 1, PI, ZF$ “ZWEBE“ -> “RUNNING...“ => 0.211+J0.077

Which can be checked in WolframAlpha using the syntax shown in the link:

http://www.wolframalpha.com/input/?i=AngerJ%28pi,+1%2Bi%29
http://www.wolframalpha.com/input/?i=WeberE%28pi,+1%2Bi%29

http://www.wolframalpha.com/input/?i=WeberE%28pi,+1%2Bi%29

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 99 of 124

Program Listing for Weber and Anger routines.

01 LBL "ZWEBE"
02 SF 00
03 GTO 00
04 LBL "ZANGJ"
05 CF 00
06 LBL 00
07 RAD
08 STO 00
09 RDN
10 2
11 ST/ Z
12 /
13 ZSTO 02
14 E
15 STO 01
16 RCL 00
17 2
18 /
19 -
20 STO 02
21 LASTX
22 E
23 +
24 STO 03
25 XEQ 00
26 RCL 00
27 PI
28 *
29 2
30 /
31 FS? 00

32 SIN
33 FC? 00
34 COS
35 ST* Z
36 *
37 ZENTER^
38 RCL 00
39 3
40 +
41 2
42 /
43 STO 03
44 3
45 RCL 00
46 -
47 2
48 /
49 STO 02
50 XEQ 00
51 ZRCL 02
52 Z*
53 RCL 00
54 PI
55 *
56 2
57 /
58 FS? 00
59 COS
60 FC? 00
61 SIN
62 ST* Z

63 *
64 FS? 00
65 ZNEG
66 Z<>W
67 ZRDN
68 Z+
69 ZAVIEW
70 RTN

71 LBL 00
72 ZRCL 02
73 Z^2
74 ZNEG
75 RCL 01
76 2
77 RDN
78 RDN
79 ZHGF
80 ZENTER^
81 0
82 RCL 02
83 ZGAMMA
84 Z/
85 ZENTER^
86 0
87 RCL 03
88 ZGAMMA
89 Z/
90 END

Registers used: R00-R05
Flags used: F0

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 100 of 124

12.9 Dilogarithm and Polylogarithm. { ZLIN , ZLI2 }

The Polylogarithm (also known as Jonquière's function) is a special function Lis(z) that is defined by the

infinite sum, or power series

Only for special values of the order s does the Polylogarithm reduce to an elementary function such as

the logarithm function. The above definition is valid for all complex orders s and for all complex

arguments z with |z| < 1; it can be extended to |z| ≥ 1 by the process of analytic continuation. See the
reference: http://people.reed.edu/~crandall/papers/Polylog.pdf

The implementation of the Polylogarythm is a very rudimentary one, more as an example of direct

porting of the real variable routine than anything else. It’s based on Jean-Marc’s version, that can be
found at: http://hp41programs.yolasite.com/dilogarithm.php

Both parameters can be complex numbers, although the series representation used forces the condition
that z must be inside the unit circle, that is |z|<1. The program will stop with an error message if

|z|>1. Note also that this method is not valid either for points on the unit circle, |z|=1. You can use
function ZLI2 for the dilogarithm, which also works in this case.

In terms of its usage, s is expected to be in level-2 of the complex stack (W), and z in level-1 (Z). Let’s
see a couple of examples.

Example 1. Calculate Li(2; 0.3+0.4i)

0, ENTER^, 2, ZENTER^ → 2+J0

(the Z-keypad version: [Z], 2 does the same easier)

.4, ENTER^, .3, XEQ “ZLIN” → 0,266+J0,461

or with FIX 9 settings:
Re = 0.266596867

Im = 0.461362892

Example 2. Calculate Li(1+i, 0.3+0.4i)

1, ENTER^, ZENTER^ → 1(1+J)

.4, ENTER^, .3, XEQ “ZLIN” → 0,326+J0,565

or with FIX 9 settings:

Re = 0,326456748

Im = 0,565254656

As you can see the program listing doesn’t get any easier – so
despite its limitations (long execution time, no analytic continuation)

it’s worthwhile including in the module.

Note that ZLIN and ZLI2 are FOCAL programs, and therefore the

argument z won’t be saved in the LastZ complex register.

http://people.reed.edu/~crandall/papers/Polylog.pdf
http://hp41programs.yolasite.com/dilogarithm.php

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 101 of 124

12.10. Lerch Transcendent Function. { ZLRCH }

The Lerch Transcendent function can be seen as an extension of the Polylogarithm, and therefore it’s

easy to modify the previous program to the more general case – adding a third argument “” as

follows:

note that contrary to the Polylogarithm case, the summation starts at n=0; not at n=1. This would

represent an issue if the power function returned a DATA ERROR condition for zero exponent (the zero-
th. term being z^0 / 0^s. However the 41Z implementation returns zero for this case, and therefore we

can use the same program to calculate both the Polylogarithm and Lerch function – taking =0 for the

additional argument in Lis:

Li(s, z) ~= Lerch (z, s, 0)

To be sure the above expression is just a programming trick, but it’s not mathematically correct. The
proper relationship between both functions is given by:

Example 1. Calculate

(0.3+0.4 i ; 3+4 i ; 1+2 i)

4, ENTER^, 3, ZENTER^ → 3+J4

2, ENTER^, 1, ZENTER^ → 1+J2

.4, ENTER^, .3, XEQ “ZLRCH” → 7,658-J1,515,

or with FIX 9 settings:
Re = 7,658159105

Im = -1,515114367

Notice the input order convention for the arguments, with
z always entered last, in the Z-level of the complex stack.

Other useful relationships also involving the Lerch

Transcendent functions are shown below:

Riemann Zeta: (*)

 ,

Legendre Chi:

(*) The convergence is very slow, thus using the dedicated
ZZETA program is a much more convenient approach.

01 LBL "ZLRCH"

02 "|Z|>1"

03 ZOUT?

04 PROMPT
05 ZSTO 01 x

06 CLZ
07 SIGN

08 ZSTO 00 x^0 = 1

09 ZRDN
10 ZSTO 02 a

11 Z<>W

12 ZSTO 03 s

13 ZNEG -s
14 W^Z 1/a^s

15 LBL 01 (k-1)

16 ZRCL 01 x
17 ZRCL 00 x^(k-1)

18 Z* x^k

19 ZSTO 00
20 ZRCL 02 a+k-1

21 E

22 ST+ 05

23 + a+k
24 ZRCL 03 s

25 W^Z (a+k)^s

26 Z/ x^k / (a+k)^s

27 Z+ k

28 Z#WR?

29 GTO 01

30 ZAVIEW

31 END

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 102 of 124

12.11. Exponential Integrals.

New since revision 4L, this section groups the Exponential Integral and related functions – all calculated
using the Hypergeometric function representation.

Index Function Description

1 ZHGF Complex Hypergeometric function Author: Jean-Marc Baillard

2 ZEI Complex Exponential Integral

3 ZCI Complex Cosine Integral

4 ZHCI Complex Hyperbolic Cosine Integral

5 ZSI Complex Sine integral

6 ZHSI Complex Hyperbolic Sine Integral

7 ZERF Complex Error function

The key enabler for this group is of course the MCODE implementation of the Complex Hypergeometric

function ZHGF – written by Jean-Marc Baillard. See the excellent web-site at:

http://hp41programs.yolasite.com/complexhypergeo.php

The rest of the functions are easily obtained as simple and short FOCAL programs, using the well-know
equivalence expressions. Their argument is a complex number, taken from the Z-level of the complex

stack (XY registers). In terms of usability they are grouped in their own launcher, invoked by pressing
[H] at the Z” prompt; that is:

[Z], [A], [H] →

Examples.-

Calculate erf(1+i) and Ei(1+i)

1, ENTER^, [Z], [A], [H], [“R“] → 1,316+J0,190
1, ENTER^, [Z], [A], [H], [“E”] → 1,765+J2,388

Calculate Ei, Ci, Si and their hyperbolic counterparts for the same argument z=(1+i)

1, ENTER^, [Z], [A], [H], [“S”] → 1,104+J0,882

1, ENTER^, [Z], [A], [H], [“H”] → 0,882+J1,104

1, ENTER^, [Z], [A], [H], [“C”] → 0,882+J0,287

1, ENTER^, [Z], [A], [H], [“I”] → 0,882+J1,284

See the program listing in next page, showing the economy of programming when using a power horse

like ZHGF to do all the heavy lifting for you.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 103 of 124

FOCAL Listing: Exponential integrals. Uses R00 – R05

01 LBL "ZERF" 01 LBL "ZEI"

02 ZENTER^ 02 E
03 Z^2 03 STO 01
04 E 04 STO 02
05 STO 01 05 E
06 1.5 06 +
07 STO 02 07 STO 03
08 CLX 08 STO 04
09 E 09 ENTER^
10 R^ 10 R^
11 R^ 11 R^
12 ZHGF 12 ZHGF
13 LASTZ 13 LASTZ
14 ZNEG 14 Z*
15 ZEXP 15 LASTZ
16 Z* 16 GTO 01

17 Z* 17 LBL "ZCI"

18 PI 18 SF 00
19 SQRT 19 GTO 00

20 1/X 20 LBL "ZHCI"

21 ST+ X 21 CF 00

22 ST* Z 22 LBL 00

23 * 23 ZENTER^
24 ZAVIEW 24 ZHALF
25 END 25 Z^2
 26 FS? 00

01 LBL "ZSI" 27 ZNEG

02 SF 00 28 ZENTER^
03 GTO 00 29 E

04 LBL "ZHSI" 30 STO 01

05 CF 00 31 STO 02

06 LBL 00 32 CLX

07 ZENTER^ 33 2
08 ZHALF 34 STO 03
09 Z^2 35 STO 04
10 FS? 00 36 1.5
11 ZNEG 37 STO 05
12 .5 38 ST+ X
13 STO 01 39 R^
14 3 40 R^
15 * 41 ZHGF
16 STO 02 42 Z*
17 STO 03 43 Z<>W

18 CLX 44 LBL 01

19 E 45 ZLN
20 ENTER^ 46 Z+
21 2 47 ZGEU
22 R^ 48 Z+
23 R^ 49 ZAVIEW
24 ZHGF 50 END
25 Z*
26 ZAVIEW
27 END

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 104 of 124

12.12. Exponential Integrals, Complex Means and General Methods Launchers.

All this many functions sure enough will benefit from having “theme” launchers grouping them, for
easier access and logical segregation. The usability is enhanced and doesn’t require overlays for the

most frequente options within the groups.

The first one combines the Exponential Integrals and the Complex Means. Use the key sequence below
to access it, and then the [SHIFT] key to toggle between uts two parts:

 [Z], [A], [H] [Z], [A], [H], [SHIFT]

See below the function correspondence for each launcher:

Exponential Integrals Complex Means

[E] ZEI [A] ZAMN

[S] ZSI [G] ZGMN

[H] ZHSI [H] ZHMN

[C] ZCI [M] ZAGM

[I] ZHCI [N] ZGHM

[R] ZERF [K] ZELK

[F] ZHG [I] ZINPT

 [O] ZOUPT

Finally the remaining Lauchers deal with Eliptical Functions and Complex Methods. You access these
groups using the keyword combinations shown below:

 [Z], [A], [R/S] [Z], [A], [R/S], [SHIFT]

Elliptic Functions DFT/Other Functions

[1] ZELIP1 [I] ZIDFT

[2] ZELIP2 [D] ZDFT

[L] ZELK [S] “ZSAM”

[E] ZELIPE [C] ZCTLN

[K] ZELIPK [P] ZPSIN

[P] ZELPKE [M] ZIGAM

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 105 of 124

Appendix. Saving & Restoring the Z-Stack in X-Memory. { SAVEZS , GETZS }

Two functions are included in the Deluxe 41Z Module to save and restore the complete complex stack
buffer in extended memory. This includes all complex levels, the real stack and the current POLAR/REC

settings. The functions are SAVEZS and GETZS.

In program execution, the file name is expected by these functions to be in ALPHA. For convenience, in
RUN mode the functions will prompt for the file name automatically - remember that ALPHA is

constantly being updated with the complex number values, so without this automated prompting
feature you would need to re-write the file name in-between operations.

You can use them to preserve their contents in a permanent X-Mem file. Only one active complex
buffer is allowed in the calculator, but you can choose from several X-Mem files holding different

complex stacks, to upload their contents on demand. Therefore prior to executing GETZS you need to
ensure that there’s no buffer#8 in memory – you can use function CLB in the AMC_OS/X module for

that. Failure to do so will generate the error message ‘DUP BUF”

The X-mem file has a custom type “Z”, with code=8. The file size is always 12 registers. If you’re using

the AMC_OS/X Module the CAT”4 enumeration includes support for this file type, which will be properly
shown as a ‘Z” type:

Where here the complex stack file name is “ZSTACK”.

Note 3.- The Hypergeometric Function is also the preferred method used for the calculation of the
Exponential Integrals and the Error function – which have been programmed as simple FOCAL

examples of the former. See the descriptions in the SandMath module users’ Manual for additional

reference.

Note 4.- The programs supplied for the Polylogarithm and Lerch functions are simplified and necessarily
non-rigorous, not using contour integrals or residues. See the references below for a formal treatment

of the problem, clearly exceeding the scope of this manual.-

http://rspa.royalsocietypublishing.org/content/459/2039/2807.full.pdf

http://rspa.royalsocietypublishing.org/content/463/2080/897.full.pdf

http://rspa.royalsocietypublishing.org/content/459/2039/2807.full.pdf
http://rspa.royalsocietypublishing.org/content/463/2080/897.full.pdf

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 106 of 124

Appendix.- Delta-Wye Transformation.

Here’s a token of appreciation for the EE audiences – using the 41Z to tackle a classic: Delta-Wye
impedance transformation for 3-phase systems. The simple program below is all there is to it – behold
the power of the 41Z complex stack in action :-)

LBL "D-Y LBL "DYD"

SF 00 ZRCL 00 Za / Zab

GTO 00 ZRCL 01 Zb / Zbc

LBL "Y-D Z+ Za+Zb / Zab+Zbc

CF 00 FC? 00

LBL 00 GTO 01

"Za" ZRCL 02 Zab
FS? 00 Z+ Zab+Zbc+Zca

"|-b" ZINV 1/(Zab+Zbc+Zca)

"|-=?" ZRPL^

PROMPT ZRCL 00 Zab

ZSTO 00 ZRCL 02 Zca

"Zb" Z* ZabZca

FS? 00 Z* Za = ZabZca

"|-c" Z<>W 1/(Zab+Zbc+Zca)

"|-=?" ZRCL 01 Zbc

PROMPT ZRCL 00 Zab

ZSTO 01 Z* ZabZbc

"Zc" Z* Zb = ZabZbc/(Zab+Zbc+Zca)

FS? 00 ZRUP 1/(Zab+Zbc+Zca)

"|-a" ZRCL 02 Zca

"|-=?" ZRCL 01 Zbc

PROMPT Z* ZbcZca

ZSTO 02 Z* Zc = ZbcZca/(Zab+Zbc+Zca)

XEQ "DYD" RTN

ZSTO 02 LBL 01

ZRDN LASTZ Zb

ZSTO 01 ZRCL 00 Za

ZRDN Z* ZaZb

ZSTO 00 ZRCL 02 Zc

ZRDN Z/ ZaZb/Zc

ZRDN Z+ Zab = Za+Zb+ZaZb/Zc

ZVIEW 00 ZRCL 01 Zb

ZVIEW 01 ZRCL 00 Za

ZVIEW 02 Z/ Zb/Za

RTN ZRCL 02 Zc

Z* ZbZc/Za

LASTZ Zc
Z+ Zc+ZbZc/Za

ZRCL 01 Zb

Z+ Zb+Zc+ZbZc/Za

ZRCL 00 Za

ZRCL 01 Zb

Z/ Za/Zb

ZRCL 02 Zc

Z* ZaZc/Zb

LASTZ Zc

Z+ Zc+ZaZc/Zb

ZRCL 00 Za

Z+ Za+Zc+ZaZc/Zb

RTN

Delta <-> Why conversions

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 107 of 124

Appendix 1.- Complex Buffer functions.

This appendix lists the buffer handling functions included in the 41Z DIAGNOSTICS module, and thus

are not related to the Complex Number treatment per se. This set is only useful to diagnose problems
or to bypass the normal execution of the module’s “standard” functions, therefore its usage is not

recommended to the casual user (i.e. do it at your own risk!).

(*) Items highlighted in yellow indicate prompting functions.

Buffer layout. The complex buffer has 5 levels, labelled L0 to L4; that’s 10 memory registers plus the

header and footer registers – for a total of 12 registers. The function names in this group use the Level
number (L0 to L4) to identify each level, as opposed to the U, V, W, and Z notation employed in

previous sections of the manual.

Function Description Input Output

-HP 41Z Initializes Z Buffer None Buffer created

CLZB Clears Z buffer None Buffler cleared

L1=XY? Is L1 equal to XY? None Y/N, skip if false

L1<>L _ Swap L1 & Level Level# as suffix levels exchanged

L1<>LX Swap L1 & Level level in X levels exchanged

L2=ZT? Is L2 equal to ZT? None Y/N, skip if false

L2>ZT Copies L2 into ZT None L2 copied to ZT

LVIEW _ View Level Level# as suffix Transposed value!

LVIEWX View level by X level in X Transposed value!

PREMON Copies XY into L0 and finds Zbuffer Re(z) in X; Im(z) in Y none

PSTMON Copies XY into L1 and synch's up Complex stack Z Re(z) in X; Im(z) in Y

RG>ZB _ _ Copies registers to Z buffer Reg# as suffix data copied from registers

ST>ZB Copies real stack to L1 & L2 None stack copied to buffer

XY>L _ Copies XY into Level Level# as suffix XY copied to LEVEL

XY>L0 Copies XY into L0 Re(z) in X; Im(z) in Y XY copied to L0

XY>L1 Copies XY into L1 Re(z) in X; Im(z) in Y XY copied to L1

ZB>RG _ _ copies buffer to registers Reg# as suffix data copied to registers

ZB>ST Copies L1 & L2 into real stack None buffer copied to Stack

ZBDROP Drops Z buffer one level None levels dropped

ZBHEAD Z buffer Header info None header register in ALPHA

ZBLIFT Lifts Z buffer one level None buffer lifted

ZBSHOW Shows Z Buffer None shows header & all levels

../../../Mis%20Documentos/HP-4141Z%22%20l
../../../Mis%20Documentos/HP-4141Z%22%20l

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 108 of 124

The buffer header (b0 register) is placed at the lowest memory address. It contains the buffer id#, its

size, and its initial address (when it was first created – no updates if it’s re-allocated later on).

Buffer creation is done automatically by the 41Z module upon power on (when the 41 awakes from

deep sleep), using the corresponding poll point in the module. The contents of the real stack registers
XYZT is copied into the buffer levels L1 & L2 upon initialization.

The buffer is maintained by the 41 OS, which handles it when modifying the layout of main memory –

either changing the SIZE settings, or modifying the user key assignments. The buffer id# is 8, and thus

should be compatible with any other memory buffer that uses a different id# (an example of which are
the TIMER alarms, with id#=10).

Should for any reason the buffer get damaged or erased (like when using the function CLZB), the

message “NO Z-STACK” would appear when trying to execute any of the 41Z module functions. To
manually re-create the complex buffer simply execute the first function in the module, “–HP 41Z” -
either by using XEQ or the Complex Keyboard sequence “Z, SHIFT, Z”. This requires at least 12

memory registers to be available or the error message “NO ROOM” will be shown.

Because the buffer can be dynamically re-allocated by the 41 OS upon certain circumstances, it’s not
possible to store its address to be reused by the functions. Every 41Z function would first seek out the
buffer address prior to proceeding with its calculation. Fortunately this takes very little overhead time.

Buffer synchronization with the appropriate real-stack levels is also performed automatically by the
41Z functions, as follows:

- In the input phase (pre-execution), monadic functions will copy the XY contents into level L1
prior to executing their code. Dual functions will do the same for the second argument Z, and

will use the current contents of the L2 level as first argument W.

- In the output phase (post-execution) the results will be placed in the complex buffer levels and

then copied to the real stack registers as appropriate: XY for monadic functions, and XZYT for
dual functions.

That’s the reason why the real stack should just be considered as a scratch pad to prepare the data

(like doing math on the real values), as only levels X,Y will be used. You must use ZENTER^ to push
the W argument into the complex level L2. In other words: real stack registers T,Z will be ignored!

The same consideration applies when performing chain calculations: because there’s no automated
complex stack lift, the result of a monadic function would be overwritten by the subsequent input
unless it is first pushed into the complex stack, using ZENTER^ or another 41Z function that does
stack lift.

Example: Calculate Ln(1+i) + (2-i)

The following sequence use the direct data entry, entering Im(z) first.
1, ENTER^, ZLN, ZENTER^, 1, CHS, ENTER^, 2, Z+ -> 2,347-j0,215

Some functions perform stack lift by default, and thus ZENTER^ is not required before them.

They are as follows:

• LASTZ

• ZRCL _ _

• ZREAL^ (also when using the complex real keypad, Z plus digit key)

• ZIMAG^ (also when using the complex imaginary keypad, Z, radix, plus digit key)

• ^IM/AG Probably the most intricate function in the module

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 109 of 124

The following sequence uses natural data entry - entering Re(z) first - as an alternative method for the

previous example. Note that because ^IMG does stack lift, it’s not necessary to use ZENTER^

1, ^IMG, 1, R/S, ZLN, 2, ^IMG, 1, CHS, R/S, Z+ -> 2,347-j0,215

Buffer synchronization with the real stack registers can be tested and forced using the following
functions in this group:

To dump the complete contents of the complex buffer into memory registers and back you can use
these two complementary functions:

Note that RG>ZB won’t check for valid header data, thus it expects the contents to be correct – like
with a previously execution of ZB>RG. Remember that the header register is a non-normalized

number (NNN), thus do not recall it using RCL or X<>.

Other functions to manipulate the contents of the buffer levels are:

All these functions act on the complex buffer, but will not display the “resulting” complex number (i.e.
will not trigger ZAVIEW upon completion). To see (view) the contents of the buffer levels without

altering their position you can use the following functions:

Note that with these functions all complex level contents will be shown transposed, that is: Im(z) + j
Re(z).

L1=XY? - Tests for the first buffer level and XY registers

XY>L1 - Copies X,Y into level L1

L2=ZT? - Tests for second buffer level and Z,T registers

L2>ZT - Copies L2 into registers Z,T

ST>ZB - Copies real stack XYZT to buffer levels L1 & L2

ZB>ST - Copies L1 & L2 to the real stack XYZT

ZB>RG _ _ - Copies complex buffer to memory registers

RG>ZB _ _ - Copies memory registers to complex buffer

L1<>L _ - swaps buffer level L1 and level given by prompt

L1<>LX - swaps buffer level L1 and level input in X

XY>L0 - copies registers X,Y into buffer level L0 (used to save arguments into LastZ)

XY>L _ - copies registers X,Y into buffer level given by prompt

ZBDROP - drops contents of complex buffer one level (used during ZRDN)

ZBLIFT - lifts contents of complex buffer one level (used by ZRUP, ZENTER^ and others)

LVIEW _ - prompts for level number (0 – 4)

LVIEWX - expects level number in X

ZBSHOW - lists the contents of all buffer levels

ZBHEAD - shows in Alpha the decoded buffer header

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 110 of 124

finally, the other two functions are auxiliary and mainly used to perform action between the two lower

and upper 4k-pages within the 41Z module: (*)

(*) Note: FAT entries for these two functions were removed in newer versions of the module.

Because of its relevance and importance within the 41Z module, the following section lists the buffer

creation and interrogation routines – pretty much the heart of the implementation. Consider that they
are called at least twice every time a function is executed and you’ll appreciate their crucial role in the

whole scheme!

PREMON - Finds Z Buffer address, Copies XY into L0 and checks X,Y for ALPHA DATA

PSTMON - Copies the Z complex level into X.Y

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 111 of 124

Remember that the buffer is refreshed (or created) each time the calculator is turned on, and that it

gets reallocated when key assignments or other buffers (like timer alarms) are made – yet it’s
theoretically possible that it gets “unsynchronized” or even lost altogether, and therefore the

assignment to the –HP 41Z function as well.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 112 of 124

Notice how we finish with ZAVIEW to show the current complex number in the stack upon buffer

creation. [CHKBUF] does not create the buffer, but reads its address into register A and the content of
the header into register C.

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 113 of 124

Appendix 2. Complex Keyboard key maps.

The following table shows the detailed key map supported by the ZL complex keyboard function

launcher.

Function Function

I II III IV V Name I II III IV V Name

Z 1/X ZINV Z S- -HP 41Z

Z SQRT ZSQRT Z Y^X W^Z

Z LOG ZLOG Z X^2 Z^2

Z LN ZLN Z 10^X ZALOG

Z X<>Y Z<>W Z e^X ZEXP

Z RDN ZRDN Z X<>Y ZTRP

Z SIN ZSIN Z RDN ZRUP

Z COS ZCOS Z ASIN ZASIN

Z TAN ZTAN Z ACOS ZACOS

Z XEQ ^IMG _ Z ATAN ZATAN

Z STO ZSTO _ _ Z ASN ZK?YN

Z RCL ZRCL _ _ Z LBL ZSIGN

Z SST Z<> _ _ Z GTO Z*I

Z ENT^ ZENTER^ Z CAT ^IMG _

Z CHS ZNEG Z ISG ZCONJ

Z EEX Z^X Z RTN X^Z

Z - Z- Z CLX CLZ

Z + Z+ Z X=Y? Z=W?

Z * Z* Z SF ZNORM

Z / Z/ Z CF ZMOD

Z 0-9 Z0-Z9 Z FS? ZARG

Z R/S ZAVIEW Z X<=Y? Z=WR?

Z , 0-9 ZJ0-ZJ9 Z BEEP ZTONE

Z Z 1/X W^1/Z Z P-R ZREC

Z Z SQRT ZPSI Z R-P ZPOL

Z Z LOG ZLNG Z X>Y? Z=I?

Z Z LN e^Z Z FIX ZRND

Z Z X<>Y Z<>V Z SCI ZINT

Z Z RDN ZQRT Z ENG ZFRC

Z Z XEQ ZIMAG^ Z X=0? Z=0?

Z Z STO ZREAL^ Z PI ZGAMMA

Z Z RCL Z/I Z LASTX LASTZ

Z Z SST CLSTZ Z VIEW ZVIEW _ _

Z Z ENT^ ZRPL Z SIN ZSINH

Z Z EEX Z^1/X Z COS ZCOSH

Z Z - Z#W? Z TAN ZTANH

Z Z 7 ZWDET Z SIN ZASINH

Z Z 8 ZWDIST Z COS ZACOSH

Z Z 9 ZWANG Z TAN ZATANH

Z Z + ZREAL? Z Z SQRT ZNXTNRT _

Z Z 4 ZIN? Z Z LN ZNXTLN

Z Z 5 ZWCROSS Z Z SIN ZNXTASN

Z Z * ZIMAG? Z Z COS ZNXTACS

Z Z 1 ZUNIT? Z Z TAN ZNXTATN

Z Z 2 ZWLINE Z Z LOG ZKBS

Z Z / Z#0? Z Z LN ZYBS

Z Z 0 ZOUT? Z Z COS ZIBS

Z Z , ZWDOT Z Z TAN ZJBS

Z Z Z Z<>U Z Z SIN ZWL

Z Z SQRT EIZ/IZ

Level Level

(c) Ángel M. Martin – May 2021

41Z Deluxe User Manual Page 114 of 124

 Appendix 3.- Formula Compendium.

Elementary complex numbers and functions – By W. Doug Wilder.

(c) Ángel M. Martin – May 2021

 115

Appendix 4.- Quick Reference Guide.

The tables in the following six pages list all 41Z functions in alphabetical order.

New functions in the Deluxe edition have pink background. Sub-functions are in brown font color.

Function Description Formula Input Output Comments

1 -HP 41Z Initializes Complex Stack Z=XY; W=ZT none Initializes Z buffer & ZAVIEW runs on CALC ON

2 W^1/Z Complex Y^1/X w^1/z = exp(Ln w / Z) w in W; z in Z (XY) w^1/z in Z (XY) Drops Buffer

3 W^Z Complex Y^X w^z = exp(z*Ln w) w in W; z in Z (XY) w^z in Z (XY) Drops Buffer

4 ZF# _ _ _ Launcher by index n/a Sub-function index Executes Sub-function

5 ZF$ _ Launcher by Name n/a Sub-function Name Executes Sub-function

6 Z+ Complex addition (x1+x2) + i (y1+y2) w in W; z in Z (XY) w+z in Z (XY) Drops Buffer, LastZ

7 Z- Complex substraction w-z = w + (-z) w in W; z in Z (XY) w-z in Z (XY) Drops Buffer, LastZ

8 Z* Complex multiplication (x1*x2 - y1*y2) + i (x1*y2 + y1*x2) w in W; z in Z (XY) w*z in Z (XY) Drops Buffer, LastZ

9 Z/ Complex division w/z = w * (1/z) w in W; z in Z (XY) w/z in Z (XY) Drops Buffer, LastZ

10 Z^1/X Hybrid Y^X z^1/n = r^1/n * exp(i*Arg/n) x in X reg; z in Y,Z regs z^1/x in Z (XY) does LastZ

11 Z^2 Complex X^2 z^2 = r^2 * exp(2i*Arg) z in Z (XY) z^2 in Z, (XY) does LastZ

12 Z^3 Cubic power z=z^3 z in Z (Im in Y, Re in X) result in Z (XY) more accurate than Z^X

13 Z^X Hybrid Y^X z^n = r^n * exp(i*n*Arg) x in X reg; z in Y,Z regs z^x in Z, (XY) does LastZ

14 Z=0? Is z=0? is z=0? z in Z (XY) YES/NO (skips if false)

15 Z=I? Is z=I? is z=i? z in Z (XY) YES/NO (skips if false)

16 Z=W? Is z=w? is z=w? w in W; z in Z (XY) YES/NO (skips if false)

17 Z=WR? are z & w equal if rounded? is Rnd(z)=Rnd(w)? w in W; z in Z (XY) YES/NO (skips if false)

18 Z#0? is z equal to zero? is z#0? z in Z (XY) YES/NO (skips if false)

19 Z#W? Is z equal to w? is z=w? w in W; z in Z (XY) YES/NO (skips if false)

20 ZACOS Complex ACOS acos z = pi/2 - asin z z in Z (XY) acos(z) in Z (XY) does LastZ

21 ZALOG Complex 10^X e^[z*ln(10)] z in Z (XY) 10^z in Z (X,Y) and ALPHA does LastZ

22 ZASIN Complex ASIN asin z = -i * asinh (iz) z in Z (XY) asin(z) in Z, (XY) does LastZ

23 ZATAN Complex ATAN atan z = -i * atanh (iz) z in Z (XY) atan(z) in Z (XY) does LastZ

24 ZCOS Complex COS cos z = cosh (iz) z in Z (XY) cos(z) in Z (XY) does LastZ

25 ZEXP Complex e^X e^x * e^(iy) z in Z (XY) e^z in Z (XY) and ALPHA does LastZ

26 ZHACOS Complex Hyp. ACOS acosh z = Ln[z + SQ(z^2 - 1)] z in Z (XY) acosh(z) in Z (XY) does LastZ

27 ZHASIN Complex Hyp. ASIN asinh z = Ln[z + SQ(z^2 + 1)] z in Z (XY) asinh(z) in Z (XY) does LastZ

28 ZHATAN Complex Hyp. ATAN atanh z = 1/2 * Ln[(1+z)/(1-z)] z in Z (XY) atanh(z) in Z (XY) does LastZ

29 ZHCOS Complex Hyp. COS cosh z = 1/2 * [e^z + e^-z] z in Z (XY) cosh(z) in Z (XY) does LastZ

30 ZHSIN Complex Hyp. SIN sinh z = 1/2 * [e^z - e^-z] z in Z (XY) sinh(z) in Z (XY) does LastZ

(c) Ángel M. Martin – May 2021

 116

Function Description Formula Input Output Comments

31 ZHTAN Complex Hyp. TAN tanh z = (e^z-e^-z)/(e^z+e^-z) z in Z (XY) tanh(z) in Z (XY) does LastZ

32 ZCF2V _ Complex Continued Fractions f(z) = B(0) + A1/[B1 +A2/[B2 + A3/[B3+..]]] User program with Bn and An F(Z) if convergence Prompts for Prgm Name

33 ZDERV _ Complex Function Derivatives df/dz and d2f/dz2 User program w/ f(z) f”(z) in “W”, f’(z) in “Z” Prompts for Prgm Name

34 ZINT? Checks if Z is an integer number are Im(z)=0 and FRC[Re(z)]=0? z in Z (Im in Y, Re in X) YES/NO (skips if false) used in Bessel fncs

35 ZINV Complex Inversion x/(x^2 + y^2) - i y/(x^2 + y^2) z in Z (XY) 1/z in Z (XY) and ALPHA does LastZ

36 ZLN Complex LN ln(z) = ln(r) + i*Arg z in Z (XY) Ln(z) in Z (XY) does LastZ

37 ZLOG Complex LOG log(z) = ln(z)/ln(10) z in Z (XY) Log(z) in Z (X,Y) does LastZ

38 ZNEG Complex CHS -z = -x - iy z in Z (XY) -z in Z (XY) does LastZ

39 ZOUT? Is z outside the unit circle? is |z|>1? z in Z (XY) YES/NO (skips if false)

40 ZPI* Product by pi z*p z in Z (XY) result in Z (XY) more accurate than FOCAL

41 ZGSS? Is z Gaussian? Re(z) and Im(z) integers? z in Z (XY) YES/NO (skips if false)

42 ZRND Rounds Z to display settings rounded values to display z in Z (XY) Rounded Re & Im in Z (XY) does LastZ

43 ZSIN Complex SIN sin z = -i *sinh (iz) z in Z (XY) sin(z) in Z (XY) does LastZ

44 ZSQRT Complex SQRT (Direct) sqr(z)=sqr(r) * e^(i*Arg/2) z in Z (XY) main value of z^1/2 in Z (XY) does LastZ

45 ZTAN Complex TAN tan z = - i * tanh (iz) z in Z (XY) tan(z) in Z (XY) does LastZ

46 ZUNIT? Is z on the unit circle? is |z|=1? z in Z (XY) YES/NO (skips if false)

47 -ZSTACK Section Header n/a none Shows "Running…" msg

48 CLZ Clears Z Re(z)=0=Im(z) none Z level (XY) cleared

49 CLZST Clears Z-Stack n/a none Z-Stack Cleared

50 LASTZ Complex LASTX n/a none Last z in X,Y regs; Lifts Buffer

51 ZAVIEW _ _ Shows Complex Z n/a z in Z (XY) Shows z in ALPHA

52 ZENTER^ Copies Z into the W register n/a z in Z (XY) Pushes z one level Up Lifts Buffer

53 Z<> _ _ Complex Exchange n/a Reg# as suffix Exchanges Z with regs contents Prompting

54 Z<>ST _ _ Exchanges Z and Level# n/a z in XY, level# in prompt z in L#; L# in L1 & X,Y Prompting

55 Z<>W Exchange Z and W (L2) n/a w in W, z in Z (XY) z in L2 & Z,T w in L1 & X,Y

56 ZIMAG^ Enter imaginary number n/a Im(z) in X zero in X; Im(z) in Y Lifts Buffer

57 ZRCL _ _ Complex RCL n/a Reg# as suffix z in X,Y - lifts stack Lifts Buffer, Prompting

58 ZRDN Z-Stack Roll Down n/a Stack Levels Rolls Down stack Drops Buffer

59 ZREAL^ Enter Real number in Z n/a Re(z) in X Re(z) in X;, Zero in Y Lifts Buffer

60 ZRPL^ Replicates z in all levels L4=L3=L2=L1 z in Z (XY) z in all 4 levels Lifts Buffer

61 ZRUP Z-Stack Roll Up n/a Stack Levels Rolls Up stack Lifts Buffer

62 ZSTO _ _ Complex STO n/a Reg# as suffix Stores z in consequtive regs Prompting

63 ZVIEW _ _ Complex View n/a Reg# as suffix Shows z in ALPHA Prompting

64 ZK?YN _ Block Key Assignments n/a prompt-driven Makes / Removes assignments may do PACKING

1 ^IM/AG _ Natural Data Entry Re ^ IM or r ^ arg Re(z) in X, Im(Z) as suffix z in Z (XY), stack lifted Prompting, Lifts Buffer

2 GETSZ _ Get z=Stack file from X-Mem n/a File Name in Alpha Copies file to Buffer #8 Includes REC/POLAR

(c) Ángel M. Martin – May 2021

 117

Function Description Formula Input Output Comments

3 NXTACS Next ACOS Value z1,2 = +/- z0 + 2p z0 in Z (XY) z1 in W, z2 in Z (XY) does LastZ

4 NXTASN Next ASIN Value z1,2 = +/- z0 + 2p/2 z0 in Z (XY) z1 in W, z2 in Z (XY) does LastZ

5 NXTATN Next ATAN value z1,2 = z0 +/- p z0 in Z (XY) z1 in W, z2 in Z (XY) does LastZ

6 NXTLN Next Ln(z) next(k) = Ln(z) + 2kp J LN(z) in Z (XY) regs z1 in W, z2 in Z (XY) does LastZ

7 NXTRTN _ Next Complex Root next(k) = z^1/n * e^(2kp/n J) n in X reg.; z^1/n in Z,Y regs z1/n * e^(2p/n J) in Z (XY) does LastZ

8 SAVEZS _ Saves z-Buffer to X-Mem n/a File Name in ALPHA Copies buffer #8 to File Includes REC/POLAR

9 ZCHSX Sign Change by X (-1)n * z x in X reg; z in Y,Z regs {(-1)^x * z} in Z (XY) does LastZ

10 ZGEU Euler's gamma constant =0,577215665 none g constant as complex Lifts Buffer

11 ZL _ Complex keyboard launcher n/a Prompt-driven Launches function prompting, launcher

12 ZPL Complex Polynomial Evaluation P(z) =  ak z^k Control word bbb.eee Polynomial result Coeffs. Expected in ZRegs

13 ZRC+ _ _ RCL addition Z= Z + cR z in Z (XY), data in cR Adds cR to z does LastZ

14 ZRC- _ _ RCL subtraction Z = z – cR z in Z (XY), data in cR Subtracts cR from z does LastZ

15 ZRC* _ _ RCL product Z = z * cR z in Z (XY), data in cR Multiplies z by cR does LastZ

16 ZRC/ _ _ RCL division Z = z / cR z in Z (XY), data in cR Divides z by cR does LastZ

17 ZST+ _ _ STO Addition cR = cR + z z in Z (XY), data in cR Adds z to complex register# prompting

18 ZST- _ _ STO Subtraction cR = cR - z z in Z (XY), data in cR Subtract z from complex register# prompting

19 ZST* _ _ STO Multiply cR = cR * z z in Z (XY), data in cR Multiplies z to complex register# prompting

20 ZST/ _ _ STO Divide cR = cR / z z in Z (XY), data in cR Divides complex register by z prompting

21 -ZVECTOR Section Header n/a none Displays Revision Number

22 POLAR Sets POLAR mode on sets the Polar flag in Buffer none shows Re(z)+J Im(z)

23 RECT Sets RECT mode on clears the Polar flag in Buffer none shows r <) arg

24 ZAGM Arithmetic-Geometric Mean AGM w in W, z in Z (XY) Result in Z(XY) does LastZ

25 ZARG Argument of Z atan(y/x) z in Z (XY) Arg(z) in X, (Y reg void) zeroes Y, LastZ

26 ZMOD Module of Z |z|=sqr(x^2+y^2) z in Z (XY) Mod(z) in X, (Y reg void) zeroes Y, LastZ

27 ZNORM Norm of Z (I.e. square of Module) ||z||=|z| ^2 z in Z (XY) (mod(z)^2) in X,Y zeroes Y, LastZ

28 ZPOL Converts to Polar notation R-P z in Z (XY) Mod(z) in X; Arg(z) in Y does LastZ

29 ZREC Convers to Rectangular notation P-R Mod(z) in X; Arg(z) in Y Re(z) in X; Im(z) in Y does LastZ

30 ZWANG Angle between Z and W arg(zw) = Arg(z) - Arg(w) z in Z (XY) ang(z,w) in X (Y void) Drops Buffer LastZ

31 ZWCROSS Cross product of Z and W z x w = |z| *|w| *Sin(Angle) w in W, z in Z (XY) z x w in X (Y void) Drops Buffer LastZ

32 ZWDET Determinant of Z and W |zw| = x2*y1 - y2*x1 w in W, z in Z (XY) det(z,w) in X (Y void) Drops Buffer LastZ

33 ZWDIST Distance between Z and W |w-z| = SQR[(x2-x1)^2 - (y2-y1)^2] w in W, z in Z (XY) dist(z,x) in X (Y void) Drops Buffer LastZ

34 ZWDOT Dot product of Z and W z*w = x1*x2 + y1*y2 w in W, z in Z (XY) dot(z,w) in X, (Y void) Drops Buffer LastZ

35 ZWLINE Line equation defined by Z and W a=(y1-y2) / (x1-x2) w in W, z in Z (XY) y=ax+b in ALPHA; b in Y, a in X Drops Buffer LastZ

36 ZWLOG Base-w Logarithm base w in W, arg. In Z w in W, z in Z (XY) Drops Buffer, LastZ

37 -HL ZMATH Section Header Calculates 2^x-1 x in X Result in X used in ZZETA

(c) Ángel M. Martin – May 2021

 118

Function Description Formula Input Output Comments

38 ZAWL Inverse of Lambert W z* e^z z in Z (XY) result in Z (XY) does LastZ

39 ZBS# Bessel subroutine 1st./2nd. Kind see manual, Flag 6 controls case w in W, z/2 in Z w in ZR00, z/2 in ZR01 FOCAL

40 ZCI Cosine Integral Ci(z) = -(z^2/4) F23(1, 1; 2, 2; 3/2, -z^2/4) z in Z (XY) result in Z (XY) FOCAL

41 ZCRT Complex Cubic Eq. Roots Cubic ecuation roots A,B,C,D in Z-Stack roots in V, W, and Z (XY) levels FOCAL

42 ZEI Exponential Integral Ei =  + ln|z|+ z* F22(1,1; 2,2; z) z in Z (XY) result in Z (XY) FOCAL

43 ZERF Error Function erf(z) = 2z/sqr() e^(-z^2) F11(1, 3/2; z^2) z in Z (XY) result in Z (XY) FOCAL

44 ZGAMMA Complex G(z) for z#0, -1, -2… Lanczos approximation z in Z (XY) G(z) in Z (XY) uses reflection for Re(z)<0

45 ZHCI Hyperbolic Cosine Integral Chi(z) = (z^2/4) F23(1, 1; 2, 2; 3/2, z^2/4) z in Z (XY) result in Z (XY) FOCAL

46 ZHGF Hypergeometric Function See manual see manual result in Z (XY) by Jean-Marc Baillard

47 ZHSI Hyperbolic Sine Integral Shi(z) = z * F12 (1/2 , 3/2, 3/2, z^2/4) z in Z (XY) result in Z (XY) FOCAL

48 ZIBS Bessel I function see manual w in W, z in Z (XY) I(w,z) in Z (XY) FOCAL

49 ZJBS Bessel J function see manual w in W, z in Z (XY) J(w,z) in Z (XY) FOCAL

50 ZKBS Bessel K function see manual w in W, z in Z (XY) K(w,z) in Z (XY) FOCAL

51 ZLI2 Dilogarithm Li(2,z) = (z^k /k^2); k=1,2… z in Z (XY) result in Z (XY) by Jean-Marc Baillard

52 ZLIN Polylogarithm Li(s,z) = (z^k /k^s); k=1,2… order w in W; arg. z in Z result in Z (XY) FOCAL

53 ZLNG Gamma Logarithm function Stirling method w/ correction z in Z (XY) result in Z (XY) FOCAL

54 ZLRCH Lerch Transcendent Fi(z,s,a) = z^k /(k+a)^s]; k=,0,1… s,a, z in U, W, and Z(XY) result in Z (XY) FOCAL

55 ZPROOT Roots of complex polynomials Iterative Prompt-driven roots in W and Z (XY) levels by Valentin Albillo

56 ZPSI Complex Digamma Approximation z in Z (XY) Psi(z) in X,Y regs. And ALPHA FOCAL

57 ZQRT Complex Quadratic Eq. Roots Quadratic ecuation roots A,B,C in Zstack Calculates roots of equation FOCAL

58 ZSHK1 Spherical Hankel h1 h(1)(w,z) order w in W; arg. z in Z result in Z (XY) FOCAL

59 ZSHK2 Spherical Hankel h2 h(2)(w,z) order w in W; arg. z in Z result in Z (XY) FOCAL

60 ZSI Sine Integral Si(z) = z * F12 (1/2 , 3/2, 3/2, -z^2/4) z in Z (XY) result in Z (XY) FOCAL

61 ZSOLVE Solves for F(z)=0 Newton's method Fnc. name in R06 Calculates one root for f(z) FOCAL

62 ZWL Lambert W function see manual z in Z (XY) W(z) in Z (XY) FOCAL

63 ZYBS Bessel Y function see manual w in W, z in Z (XY) Y(w,z) in Z (XY) FOCAL

64 ZZETA Riemann Zeta function Borwein Algorithm z in Z (XY) result in Z (XY) by Jean-Marc Baillard

0 -IMAGINE Section Header n/a n/a n/a

1 1/Z alternative ZINV (Uses TOPOL) 1/r * exp(-i arg) z in Z (XY) 1/z in X,Y registers and ALPHA does LastZ

2 e^Z alternative ZEXP e^z = e^x * (cos y + i sin y) z in Z (XY) exp(z) in Z (XY) does LastZ

3 EIZ/IZ spherical hankel h1(0,z) h(1)(0,z) = exp(i*z) / i*z z in Z (XY) r esult in Z (XY) does LastZ

4 SQRTZ Alternative SQRT (Uses TOPOL) sqr(z)=sqr(r) * e^(i*Arg/2) z in Z (XY) main value of z^1/2 in Z (XY) does LastZ

5 X^1/Z Hybrid Y^X a^1/z = exp(1/ z*Ln a) x in X reg; z in Y,Z regs x^z in Z (XY) does LastZ

6 X^Z Hybrid Y^X a^Z = exp(z*Ln a) x in X reg; z in Y,Z regs x^z in Z (XY) does LastZ

7 Z*I Multiplies by I (90 deg. Rotation) iz = -Im(z) + I Re(z) z in Z (XY) z*i in L1 & XY does LastZ

8 Z/I Divides by I (-90 deg. Rotation) iz = -Im(z) + I Re(z) z in Z (XY) z*i in L1 & XY does LastZ

(c) Ángel M. Martin – May 2021

 119

Function Description Formula Input Output Comments

9 ZBSL _ Bessel Functs. Sub-Launcher n/a Prompts for Function Executes Function

10 ZCONJ Complex Conjugate conj = x – iy z in Z (XY) Inverts sign of Im(z) does LastZ

11 ZDISP Displays Z in LCD Z = Re:Im Values in Y, X String in LCD No negative values!

12 ZDBL Doubles z 2*z z in Z (XY) 2z in Z (XY) does LastZ

13 ZFRC Makes Re(z), Im(z) fractional Int(Re(z) = Int(Im(z)) = 0 z in Z (XY) Result in Z (XY) does LastZ

14 ZHALF Halves z z/2 z in Z (XY) z/2 in Z (XY) Does LastZ

15 ZHGF _ Hypergeometric Launcher n/a Prompts for choice Executes function

16 ZHYP _ Hyperbolics Launcher n/a Prompts for choice Executes function

17 ZIMAG? is Im(z)=0? is Im(z)=0? z in Z (XY) YES/NO (skips if false)

18 ZIN? Is z inside the unit circle? is |z|<1? z in Z (XY) YES/NO (skips if false)

19 ZINT Makes Re(z) and Im(z) integers Re(z) = Int[Re(z)]; Im(z)=Int[Im(z)] z in Z (XY) Result in Z (XY) Does LastZ

20 ZMTV _ Multi-functions Launcher n/a Prompts for choice Executes function FOCAL

21 ZNXT _ NEXT function Launcher n/a Prompts for Choice Executes functions

22 ZPI Pi as a complex number Zpi = pi + j0 none Pi in Z(XY) Lifts Buffer

23 ZPRT _ Poly-roots functions Launcher n/a Prompts for Choice Executes function

24 ZREAL? Is Re(z)=0? Is Re(z)=0? z in Z (XY) YES/NO (skips if false)

25 ZQUAD Shows quadrant for z Quad# as function of location z in Z (XY) Sets corresponding user flag 1-4 Clears other flags 1-4

26 ZSIGN Complex SIGN sign = z/|z| z in Z (XY) z/Mod(z) in X,Y does LastZ

27 ZTONE Makes a sound Frequency and duration z in Z (XY) Makes sound Shows Z at end

28 ZTRP Exchanges Re(Z) and Im(Z) zTrp = y + iX z in Z (XY) Im(z) in X, Re(z) in Y does LastZ

29 -DELUXE Section Header n/a n/a n/a

30 ZAMN Complex Arithmetic Mean AM =  zk / n Control word bbb.eee in X Result in Z (XY) Data expected in ZRegs

31 ZANGJ Anger J(n,z) Function See manual z in(ZY), n in X Result in Z (XY)

32 ZCRF Carlson Integral 1st. kind See manual n,n,p,z in stack Result in X Complex conjugate

33 ZCRJ Carlson Integral 3rd. kind See manual n,n,p,z in stack Result in X Complex conjugate

34 ZCSX Fresnel Integrals C(x) & S(x) See manual X in X S(x) in Y, C(x) in X FOCAL

35 ZELIP1 Incomplete Elliptic integral 1st kind Complex amplitude, real modulus a in (Y,Z), m in X Result in Z (XY) FOCAL

36 ZELIP2 Incomplete Elliptic Integral 2nd kind Complex amplitude, real modulus a in (Y,Z), m in X Result in Z (XY) FOCAL

37 ZELIPE Complete Elliptic Integral 2nd kind Uses Hypergeometric functions Complex m in Z (XY) Result in Z (XY) Requires |z|<1

38 ZELIPK Complete Elliptic Integral 1st kind Uses Hypergeometric functions Complex m in Z (XY) Result in Z (XY) Requires |z|<1

39 ZELK Complete Elliptic Integral 1st kind Uses AGM Complex m in Z (XY)) Result in Z (XY) FOCAL

40 ZELPKE Comlete Elliptic Intg. 1st & 2nd kinds Uses AGM and AGM2 Complex m in Z (XY) Results in W and Z (XY) FOCAL

41 ZGHM Geometric-Harmonic Mean GHM w in W, z in Z (XY) Result in Z (XY) does LastZ

42 ZGMN Complex Geometric mean GM = [ Zk]^1/k Control word bbb.eee in X Geometric mean in Z (XY) Data expected in ZRegs

(c) Ángel M. Martin – May 2021

 120

Function Description Formula Input Output Comments

43 ZHMN Complex Harmonic Mean HM =  1 / [1/zk] Control word bbb.eee in X Harmonic mean in Z (XY) Data expected in ZRegs

44 ZINPT Enters complex data in ZRegs n/a Control word bbb.eee in X Data is stored sequentially FOCAL

45 ZKLV1 Kelvin Functions 1st kind Uses Hypergeometric Function x in X bei(x) in Y, ber(x) in X FOCAL

46 ZOUPT Shows complex data n/a Control word bbb.eee in X Data is shown sequentially SF 21 to stop each value

47 ZPD1 Complex Polynomial 1st derivative P’(z) =  k ak z^*k-1 |k=1,2 .. n z0 in (Y,Y) ; bbb.eee in X dP(z)/dz in “Z” (XY) does Lastz

48 ZPD2 Complex Polynomial 2nd derivative P”(z) =  k (k-1) ak z^k-2 | k=2,3..n z0 in (Y,Y) ; bbb.eee in X d2P(z)/dz2 in “Z” (XY) does Lastz

49 ZPLI Complex Polynomial Primitive IT[P(z)] =  ak z^ k+1 / (k+1) | k=0,1..n z0 in (Y,Y) ; bbb.eee in X Result in Z (XY) does LastZ

50 ZPSIN Complex Poly-Gamma function See manual Z in (Y,X) ; n in X Result in Z (XY)

51 ZSJB Complex Spherical Bessel J(w,z) j(w,z) = sqr(/2z) J(w+1/2, z) w in W, z in Z (XY) Result in Z (XY)

52 ZSYB Complex Spherical Bessel Y(w,z) y(w,z) = sqr(/2z) Y(w+1/2, z) w in W, z in Z (XY) Result in Z (XY)

53 ZWEBE Weber function E(n,z) See manual z in (Y,X) ; n in X Result in Z (XY)

54 CAT+ _ Sub-function Catalog n/a none Sequential Enumeration XEQ executes function

55 (c) Copyright Message n/a none Shows copyright in ALPHA “(c) AMC 2016“

56 LASTF Executes last function n/a Previous call by launcher Re-executes function Includes sub-functions

(c) Ángel M. Martin – May 2021

 121

1 -ZBUFFER Section Header n/a None None

2 CLZB Clears Z buffer n/a None buffler cleared

3 L1=XY? is L1 equal to XY? n/a None Y/N, skip if false

4 L1<>L _ _ Swap L1 & Level n/a Level# as suffix levels exchanged Prompting

5 L1<>L2 Swap L1 & L2 n/a None levels exchanged

6 L1<>L3 Swap L1 & L3 n/a None levels exchanged

7 L1<>L4 Swap L1 & L4 n/a None levels exchanged

8 L1<>LX Swap L1 & Level n/a level in X levels exchanged

9 L2=ZT? is L2 equal to ZT? n/a None Y/N, skip if false

10 L2>ZT Copies L2 into ZT n/a None L2 copied to ZT

11 LVIEW _ View Level n/a Level# as suffix Transposed value! Prompting

12 LVIEWX View level by X n/a level in X Transposed value!

13 PREMON Copies XY into L0 and finds Zbuffer n/a Re(z) in X; Im(z) in Y none

14 PSTMON Copies XY into L1 and synch's up n/a Re(z) in X; Im(z) in Y None

15 RG>ZB _ _ Copies registers to Z buffer n/a Reg# as suffix data copied from registers Prompting

16 ST>ZB Copies real stack to L1 & L2 n/a None stack copied to buffer

17 XY>L _ Copies XY into Level n/a Level# as suffix XY copied to LEVEL Prompting

18 XY>L0 Copies XY into L0 n/a Re(z) in X; Im(z) in Y XY copied to L0

19 XY>L1 Copies XY into L1 n/a Re(z) in X; Im(z) in Y XY copied to L1

20 ZB>RG _ _ copies buffer to registers n/a Reg# as suffix data copied to registers Prompting

21 ZB>ST Copies L1 & L2 into real stack n/a None buffer copied to Stack

22 ZBDROP Drops Z buffer one level n/a None levels dropped Drops Buffer

23 ZBHEAD Zbuffer Header info n/a None header register in ALPHA

24 ZBLIFT Lifts Z buffer one level n/a None buffer lifted Lifts Buffer

25 ZBVIEW Shows Z Buffer n/a None shows header & all levels FOCAL

26 -B UTILS Section Header n/a None None

27 B? Does buffer exist? n/a buffer id# in X YES/NO (skips if false) CCD Module

28 BLIST lists all buffers existing n/a none list in Alpha D. Yerka

29 BLNG? Buffer length n/a buffer id# in X buffer size in X CCD Module

30 BX>RG copies buffer to registers n/a buffer id# in X data copied into R00 to end David Assm

31 CLB Clear buffer n/a buffer id# in X Clears buffer from memory CCD Module

32 FINDBX finds buffer address n/a buffer id# in X buffer address in X D. Yerka

33 MAKEBX makes buffer in RAM n/a (id#,size) in X buffer created D. Yerka

34 RG>BX copies registers to buffer n/a Data in R00 to Rnn Copied to Buffer David Assm

(*) Buffer functions have been moved to the BUFFERLAND Module, under a dedicated section for the 41Z case.

../../../Mis%20Documentos/HP-4141Z%22%20l
../../../Mis%20Documentos/HP-4141Z%22%20l

(c) Ángel M. Martin – May 2021

 122

Appendix 5.- Buffer logic function table.

 Pre-Exec Post-Exec

 Alpha in XY XY to L0 XY to L1 Buffer LIFT L2 -> ZT Buffer DROP XY into L1 L1,2 -> XYZT ZAVIEW

1 - HP-41 Z Initialize Buffer yes no yes no no no no no yes

2 W^Z Power yes yes no no yes PREDUAL yes yes yes yes POSTDUAL

3 Z+ Addition yes yes no no yes PREDUAL yes yes yes yes POSTDUAL

4 Z- Substraction yes yes no no yes PREDUAL yes yes yes yes POSTDUAL

5 Z* Multiply yes yes no no yes PREDUAL yes yes yes yes POSTDUAL

6 Z/ Divide yes yes no no yes PREDUAL yes yes yes yes POSTDUAL

7 ZWANG Angle between yes yes no no yes PREDUAL yes yes yes no PSTDUAL-2

8 ZWCROSS Cross Product yes yes no no yes PREDUAL yes yes yes no PSTDUAL-2

9 ZWDET Determinat yes yes no no yes PREDUAL yes yes yes no PSTDUAL-2

10 ZWDIST Distance yes yes no no yes PREDUAL yes yes yes no PSTDUAL-2

11 ZWDOT Dot Product yes yes no no yes PREDUAL yes yes yes no PSTDUAL-2

12 ZWLINE Line Equation yes yes no no yes PREDUAL yes yes yes no PSTDUAL-2

13 Z=W? is Z=W? yes no yes no yes PREDUL-2 no no no no

14 Z=WR? is Z=W round? yes no yes no yes PREDUL-2 no no no no

15 Z#W? is Z not W? yes no yes no yes PREDUL-2 no no no no

16 Z=0? is Z Zero? yes no yes no no PREMON-2 no no no no

17 Z#0? is Z not zero? yes no yes no no PREMON-2 no no no no

18 Z=I? is Z = i? yes no yes no no PREMON-2 no no no no

19 ZREAL? Is Z real? yes no yes no no PREMON-2 no no no no

20 ZIMAG? Is Z imag? yes no yes no no PREMON-2 no no no no

21 ZIN? |Z|<1? yes no yes no no PREMON-2 no no no no

22 ZOUT? |Z|>1? yes no yes no no PREMON-2 no no no no

23 ZUNIT? |Z|=1? yes no yes no no PREMON-2 no no no no

24 X^Z Hybrid Power yes yes no no no PREMON no yes yes yes POSTMON

25 Z^2 Z^2 yes yes no no no PREMON no yes yes yes POSTMON

26 Z^X Z^X yes yes no no no PREMON no yes yes yes POSTMON

27 ZACOS ACOS yes yes no no no PREMON no yes yes yes POSTMON

28 ZACOSH ACOSH yes yes no no no PREMON no yes yes yes POSTMON

29 ZALOG 10^Z yes yes no no no PREMON no yes yes yes POSTMON

30 ZASIN ASIN yes yes no no no PREMON no yes yes yes POSTMON

../41Z_v4H.XLS#TITLE0#TITLE0
../41Z_v4H.XLS#WZ#WZ
../41Z_v4H.XLS#ZPLUS#ZPLUS
../41Z_v4H.XLS#ZMINUS#ZMINUS
../41Z_v4H.XLS#ZTIMES#ZTIMES
../41Z_v4H.XLS#ZDIV#ZDIV
../41Z_v4H.XLS#zwang#zwang
../41Z_v4H.XLS#zwcross#zwcross
../41Z_v4H.XLS#zwdetm#zwdetm
../41Z_v4H.XLS#ZDIST#ZDIST
../41Z_v4H.XLS#zwdot#zwdot
../41Z_v4H.XLS#zwline#zwline
../41Z_v4H.XLS#ZW#ZW
../41Z_v4H.XLS#ZEQWR#ZEQWR
../41Z_v4H.XLS#ZW#ZW
../41Z_v4H.XLS#ZZERO#ZZERO
../41Z_v4H.XLS#ZZERO#ZZERO
../41Z_v4H.XLS#ZI#ZI
../41Z_v4H.XLS#ZREAL#ZREAL
../41Z_v4H.XLS#ZIMAG#ZIMAG
../41Z_v4H.XLS#within#within
../41Z_v4H.XLS#beyond#beyond
../41Z_v4H.XLS#unity?#unity?
../41Z_v4H.XLS#ZPOW#ZPOW
../41Z_v4H.XLS#ZQUAD#ZQUAD
../41Z_v4H.XLS#ZTON#ZTON
../41Z_v4H.XLS#ZACOS#ZACOS
../41Z_v4H.XLS#ZACOSH#ZACOSH
../41Z_v4H.XLS#tentox#tentox
../41Z_v4H.XLS#ZASIN#ZASIN

(c) Ángel M. Martin – May 2021

 123

31 ZASINH ASINH yes yes no no no PREMON no yes yes yes POSTMON

32 ZATAN ATAN yes yes no no no PREMON no yes yes yes POSTMON

33 ZATANH ATANH yes yes no no no PREMON no yes yes yes POSTMON

34 ZCONJ X-Yj yes yes no no no PREMON no yes yes yes POSTMON

35 ZCOS COS yes yes no no no PREMON no yes yes yes POSTMON

36 ZCOSH COSH yes yes no no no PREMON no yes yes yes POSTMON

37 ZDBL 2*Z yes yes no no no PREMON no yes yes yes POSTMON

38 ZEXP E^Z yes yes no no no PREMON no yes yes yes POSTMON

39 ZHALF Z/2 yes yes no no no PREMON no yes yes yes POSTMON

40 ZINV 1/Z yes yes no no no PREMON no yes yes yes POSTMON

41 ZLN Ln(Z) yes yes no no no PREMON no yes yes yes POSTMON

42 ZINT yes yes no no no PREMON no yes yes yes POSTMON

43 ZFRC yes yes no no no PREMON no yes yes yes POSTMON

44 ZLOG Log(Z) yes yes no no no PREMON no yes yes yes POSTMON

45 ZNEG -Z yes yes no no no PREMON no yes yes yes POSTMON

46 ZRND rounded Z yes yes no no no PREMON no yes yes yes POSTMON

47 ZSIGN Sign(Z) yes yes no no no PREMON no yes yes yes POSTMON

48 ZSIN SIN yes yes no no no PREMON no yes yes yes POSTMON

49 ZSINH SINH yes yes no no no PREMON no yes yes yes POSTMON

50 ZSQRT Square Root yes yes no no no PREMON no yes yes yes POSTMON

51 ZTAN TAN yes yes no no no PREMON no yes yes yes POSTMON

52 ZTANH TANH yes yes no no no PREMON no yes yes yes POSTMON

53 ZTRP Re<>Im yes yes no no no PREMON no yes yes yes POSTMON

54 ZARG Zarg yes yes no no no PREMON no yes yes no PSTMON-2

55 ZMOD |Z| yes yes no no no PREMON no yes yes no PSTMON-2

56 ZNORM |Z|^2 yes yes no no no PREMON no yes yes no PSTMON-2

57 ZREC Rectangular yes yes no no no PREMON no yes yes yes POSTMON

58 ZPOL Polar Notation yes yes no no no PREMON no yes yes yes POSTMON

59 e^Z alternate ZEXP yes yes no no no PREMON no yes yes yes POSTMON

60 EIZ/IZ function yes yes no no no PREMON no yes yes yes POSTMON

61 Z^1/X hybrid power yes yes no no no PREMON no yes yes yes POSTMON

62 Z*I rotation yes yes no no no PREMON no yes yes yes POSTMON

63 Z/I rotation yes yes no no no PREMON no yes yes yes POSTMON

64 NXTASN Next ASIN yes yes no no no PREMON no yes yes yes POSTMON

65 NXTACS Next ACOS yes yes no no no PREMON no yes yes yes POSTMON

66 NXTATN Next ATAN yes yes no no no PREMON no yes yes yes POSTMON

../41Z_v4H.XLS#ZASINH#ZASINH
../41Z_v4H.XLS#ZATAN#ZATAN
../41Z_v4H.XLS#ZATANH#ZATANH
../41Z_v4H.XLS#ZCNJ#ZCNJ
../41Z_v4H.XLS#zcos#zcos
../41Z_v4H.XLS#zcosh#zcosh
../41Z_v4H.XLS#zdbl#zdbl
../41Z_v4H.XLS#ZEXP#ZEXP
../41Z_v4H.XLS#HALFZ#HALFZ
../41Z_v4H.XLS#ZINV#ZINV
../41Z_v4H.XLS#LNZ#LNZ
../41Z_v4H.XLS#ZINT#ZINT
../41Z_v4H.XLS#zfrc#zfrc
../41Z_v4H.XLS#LOGZ#LOGZ
../41Z_v4H.XLS#ZCHS#ZCHS
../41Z_v4H.XLS#ZROUND#ZROUND
../41Z_v4H.XLS#zsign#zsign
../41Z_v4H.XLS#zsin#zsin
../41Z_v4H.XLS#zsinh#zsinh
../41Z_v4H.XLS#ZSQRT#ZSQRT
../41Z_v4H.XLS#ztan#ztan
../41Z_v4H.XLS#ztanh#ztanh
../41Z_v4H.XLS#ZREV#ZREV
../41Z_v4H.XLS#zarg2#zarg2
../41Z_v4H.XLS#ZMOD#ZMOD
../41Z_v4H.XLS#znorm#znorm
../41Z_v4H.XLS#ZREC#ZREC
../41Z_v4H.XLS#ZARG#ZARG
../41Z_v4H.XLS#ETOZ#ETOZ
../41Z_v4H.XLS#eizoveriz#eizoveriz
../41Z_v4H.XLS#ZTOVER#ZTOVER
../41Z_v4H.XLS#IMULT#IMULT
../41Z_v4H.XLS#IDIV#IDIV
../41Z_v4H.XLS#NXTASN#NXTASN
../41Z_v4H.XLS#NXTACS#NXTACS
../41Z_v4H.XLS#NXTATN#NXTATN

(c) Ángel M. Martin – May 2021

 124

67 NXTLOG Next LN yes yes no no no PREMON no yes yes yes POSTMON

68 NXTNRT Next Nth. Root yes yes no no no PREMON no yes yes yes POSTMON

69 ZAVIEW Output Z yes no no no no no no no yes

70 CLZ Clear Z no no no no no no yes yes yes POSTMON

71 ZIMAG Clear Re(z) no yes no no no no yes yes yes POSTMON

72 ZREAL Clear Im(z) no yes no no no no yes yes yes POSTMON

73 CLZST Clear Zstack no no no no no no no yes yes PSTMON-3

74 Z<> Exchange yes no no no no PREMON no yes yes yes POSTMON

75 Z<>W Exchange Stack yes no yes no no PREMON-2 no no yes yes PSTMON-3

76 Z<>R Exchange Stack yes no yes no no PREMON-2 no no yes yes PSTMON-3

77 Z<>S Exchange Stack yes no yes no no PREMON-2 no no yes yes PSTMON-3

78 LASTZ last argument yes no yes yes no PREMON-2 no no yes yes PSTMON-3

79 ZR^ Roll Up Zstack yes no yes yes no PREMON-2 no no yes yes PSTMON-3

80 ZRCL Recall to Z yes no yes yes no PREMON-2 no yes yes yes POSTMON

81 IMAGINE inputs Im(z) yes no yes yes no PREMON-2 no yes yes yes POSTMON

82 ZENTER^ Enter level yes no yes yes no PREMON-2 no no yes yes PSTMON-3

83 ZREAL^ Input number yes no no yes no PREMON no yes yes yes POSTMON

84 ZIMAG^ Input number yes no no yes no PREMON no yes yes yes POSTMON

85 ZRDN Roll Down ZSTK yes no yes no no PREMON-2 yes no yes yes PSTMON-3

86 ZREPL Replicates Z yes no yes no no PREMON-2 no no yes yes PSTMON-3

87 ZSTO Stores Z yes no yes no no PREMON-2 no no yes yes PSTMON-3

../41Z_v4H.XLS#plus2pi#plus2pi
../41Z_v4H.XLS#nxtrtn#nxtrtn
../41Z_v4H.XLS#ZOUT#ZOUT
../41Z_v4H.XLS#clearz#clearz
../41Z_v4H.XLS#ZCLST#ZCLST
../41Z_v4H.XLS#zswap#zswap
../41Z_v4H.XLS#ZEXCH#ZEXCH
../41Z_v4H.XLS#ZEXCH2#ZEXCH2
../41Z_v4H.XLS#ZEXCH3#ZEXCH3
../41Z_v4H.XLS#ZRCLA#ZRCLA
../41Z_v4H.XLS#ZRUP#ZRUP
../41Z_v4H.XLS#zrcl#zrcl
../41Z_v4H.XLS#IMAGINE#IMAGINE
../41Z_v4H.XLS#ZENTER#ZENTER
../41Z_v4H.XLS#zrnd#zrnd
../41Z_v4H.XLS#ZREPL#ZREPL
../41Z_v4H.XLS#ZSTO#ZSTO

