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Appendix 0. – Sketch of the 41Z Launchers Map 

 
The figure below shows the hierarchy and dependencies between all launchers. Note that only those 

choices prompting to other levels are shown, not all prompting functions (like ZSTO, ZRCL, Z<>, 
ZVIEW, ^IM/AG, etc. 

 

 
 

 
Note. Within reason, this module adopts the general convention to always use MCODE headers for all 

functions, even for those which really are FOCAL programs. This improves readability, reduces the code 
size, and  facilitates coding them as extensions to the launchers. The drawback is that the 41 OS 

interprets the programs to be in PRIVATE mode and therefore you won’t be able to see the steps. Use 

the program listings within this manual instead. Their names are in BLACK font color to differentiate 
them from the native MCODE ones, which are in BLUE. 
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41Z Deluxe – Complex Number Module for the HP-41 
 

0.  Preamble - A Complex Relapse - Reloaded 
 
The 41Z module was the author’s first project to use a combination of both MCODE and math 

techniques put together in service of a dedicated purpose. The design of the complex stack in particular 

was the subject of careful implementation and extensive testing – glad to say the effort has paid off 
and that the design has worked well to date. 

 
This new revision benefits from bank-switching and the usage of Library#4 – a dedicated ROM packed 

with MCODE routines used frequently and repeatedly by several other modules (SandMath, PowerCL 
amongst others). Library#4 is located in page 4, and must be present on the system for this version of 

the 41Z module to work properly.  All interaction occurs behind the scenes and transparently to the 

user.  
 

There is a Library presence check made upon the Calculator ON event, showing an error message if it’s 
not found - but otherwise the library is completely invisible to the user. Refer to the appropriate 

instructions manual for installation details.  For compatibility reasons,  make sure you have revision “Q” 
or higher of the Library#4 ROM. 
 

Changing the original code to take advantage of the library took some effort, but the benefits of doing 
so have been twofold: The revised code is more robust and better structured, plus a lot of room was 

recovered and used for new functionality. 
 

 

The following summarizes the most important changes in the Deluxe version: 

 
1. Extended the memory access functions functionallity to fully support the stack registers. Both 

directly and with indirect arguments, with dedicated prompts and interrelationships. Furthermore, 

the function arguments are now entered as non-merged program lines directly by the function 

itself.  This implementation applies to ZRCL, ZSTO, Z<>, and ZVIEW and is a direct port from 
the Total_Rekall module applied to complex registers.  Also added RCL Math functions to the set. 

 
2. Implemented an auxiliary FAT to allocate many other additions – mostly in the High-Level Math but 

not exclusively. Also re-instated the less relevant functions (such as ZIMAG, ZREAL, ZHALF, 

ZDBL, etc.) as sub-functions in the auxiliary FAT. The auxiliary FAT is also the home for all the 

second-tier sub-launchers underneath the main ZL function, such as ZMTV, ZHYP, ZNXT, ZBSL, 

etc. 

 
3. Added sub-function launchers – ZF$ by name and ZF# by index#. This implementation is 

analogous to other modules and adheres to the U/I guidelines developed for sub-function design 

and usage. ALPHA prompts will be made directly in the by-name launchers. The sub-function index 
is added as a non-merged program line in PRGM mode. 

 
4. Convenient implementation of the “Last Function” functionality – for direct re-execution of the last 

used function without retyping its name or navigating the launchers and menu structures. All 
functions called from any of the dedicated launchers will be captured, included main-FAT entries or 

functions from other modules as well. 

 
5. Addition of MCODE  implementations of the Continued Fractions evaluation (ZCF2V) and 10-point 

Complex Derivative Engine (ZDERV) – both written by Greg McClure. Use it to calculate the first 
and second derivatives of a user-defined function programmed in memory as a FOCAL routine 

using the 41Z functions.  
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6. Added set of MCODE functions for Complex Means (Arithmetic, Geometric, Harmonic and their dual 

forms), as well as Polynomial Evaluation, including the first and second derivatives and its primitive.  
The complex ZAGM will also be used for the Elliptic Integrals routines. 

 

7. Added set of functions to calculate the Complete and incomplete Elliptic integrals of first and 
second kinds - with complex amplitudes or modulus. Some routines require the SandMath module 

to work. 
 

8. Added multiple functions in the High-Level math section. Seven of them are to calculate the Error 

function and the Exponential, Sine, Cosine (and their Hyperbolic counterparts) integrals – ZHGF, 
the Complex Hypergeometric Function (written by Jean-Marc Baillard).  ZERF, ZEI, ZCI, ZHCI, 

ZSI, and ZHSI - all using the Hypergeometric Function method. The remaining three are ZLERCH 
for the Lerch transcendental, plus ZLI2 and ZLIN, to calculate the Polylogarithm. All of them work 

with complex arguments.   
 

9. Usage of section headers, so they can be called in FOCAL programs to perform actual calculations. 

This is the case for –ZVECTOR (which performs ZGPRD), -ZSTACK (which does HARMN) and –
HL ZMATH (which performs 2^X-1). These “hidden” functions are only used in dedicated sections 

of the module and/or FOCAL programs.  This includes double-duty usage of the new function 
ZHGF –In RUN mode it is a new function launcher, grouping the functions that implement this 

calculation method. However in a running program it performs the actual execution work. 

 
 

                                                                   
 

10. Added two MCODE functions for the Discrete Fourier Transform calculation on a set of complex 

data points, direct and inverse. ZDFT and ZIDFT will work on a set of complex data registers 
defined by its control word bbb.eee in X – returning the transformed set to a contiguous set of 

registers following that sample. 

 
11. And last but not least, numerous changes in the code all throughout the module, rearranged 

sections and overall improvement in the consistency and usability of the functions  - notably 
NXTNRT prompts when called from the ZNEXT launcher; now allows using the top two key rows 

(A – J) for index shortcuts 1-10. 

 
 

Warning: due to all those function removals and additions, this version of the 41Z module has slightly 
different function arrangement in the FATs. If you have written your own programs using 41Z functions 

they may not match the new XROM id#’s and therefore will need to be re-written. At this point in the 

game this is highly unlikely, but just in case this is to be observed. 
 

Note for Advanced Users:  
 

The 41Z Deluxe is a bank-switched module. The bank switching will happen on both pages 
simultaneously therefore the module should not be plugged on “straddled” port configurations. Note 

also that you cannot configure only one page of the 41Z Deluxe module – therefore the footprint will 

always take a complete external port in the ROM bus. 

 

Page Bank-1 Bank-2 

Upper Page       
XROM #04 

Main FAT w/ High-Level 
Math, Zvectors, 

Function Tables and 
Launcher M-Code 

Lower Page       
XROM #01 

Main and Aux-FATs, Z-stack 
Lower-level Math Routines. 

MCODE only. 
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1. Introduction. 
 
Complex Number handling is perhaps the most notable area where the HP-41 didn’t have a 

comprehensive set of native functions, written in machine code and so taking advantage of the speed 
and programming enhancements derived from it. While both the Math Pack and the Advantage Rom 

provide FOCAL programs for complex number treatment, neither of them could be properly consider as 
a full function set to the effect of, for instance, the powerful Matrix handling functions contained in the 

Advantage Rom (in turn an evolution of those implemented in the CCD Module). 
 

The 41Z module provides a significant number of functions that should address the vast majority of 

complex number problems, in a user-friendly context, and with full consistency. To that goal this 
manual should also contribute to get you familiar with their usage and applications, hopefully learning a 

couple of new things and having some fun during the process. 
 

The implementation provided in this 16k-module is a fourth-generation code, building on the initial 41Z 

ROM released by the author in April 2005 – and on the previous version released in 2009. Numerous 
improvements have been added to the initial function set, notably the addition of a 4-level complex 
stack, a POLAR mode, and a fully featured complex mode keyboard. Memory management is facilitated 
by prompting functions that deal with complex arguments, like ZSTO, ZRCL, (both with full math 

support),  Z<>, and ZVIEW – all of them fully programmable as well. 

 
 

1.1. Launchers and Last Function functionality. 

 
The 41Z Deluxe includes full support for the “LASTF” functionality.  This is a handy choice for repeat 

executions of the same function (i.e. to execute again the last-executed function), without having to 

type its name or navigate the different launchers to access it. 
 

The implementation is not universal – it only covers functions invoked using the dedicated launchers, 
but not those called using the mainframe XEQ function. The following table summarizes the launchers 

that include this feature: 
 

Module Launchers LASTF Method 

41Z “Deluxe” ZL _  Captures (sub)fnc id# 

 ZHGF, ZPRT, ZNEXT, ZBSL, ZHYP Captures (sub)fnc id# 

 ZF$ _ Captures fnc NAME 

 ZF# _ _ _ Captures (sub)fnc id# 

 CAT+ (XEQ) Captures (sub)fnc id# 

 

LASTF Operating Instructions 

The Last Function feature is triggered by pressing the radix key (decimal point - the same key used by 

LastX) twice at the “Z: ” prompt. When this feature is invoked, it first shows “LASFT” briefly in the 

display, quickly followed by the last-function name. Keeping the key depressed for a while shows 

“NULL” and cancels the action. In RUN mode the function is executed, and in PRGM mode it’s added as 

a program step if programmable, or directly executed if not programmable.  

If no last-function record yet exists, the error message “NO LASTF” is shown. If the buffer #9 (used to 

store the last function id# code) is not present, the error message is “NO BUF” instead. 
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2. Complex Stack, number entering and displaying. 
 

A four-level complex stack is available to the user to perform all complex calculations. The complex 
stack levels are called U, V, W, and Z – from top to bottom. Each level holds two real numbers, the 

imaginary and real parts of the corresponding complex number. Besides them, a “LastZ” complex 

register S  temporarily stores the argument of the last executed function.   

 
                                 

 
The complex stack uses a dedicated buffer in main memory. It is 

created and maintained by the 41Z module and its operation should 
be transparent to the user. This buffer is independent from the real 

stack (X, Y, Z, and T registers) but it’s important however to 
understand how they interact with each other. A complex number 

uses two real stack levels (like X and Y), but a single complex stack 

level (like Z or W).  The figure on the left shows the relationship 
between the complex and real stacks, which is automatically 

maintained upon function execution, as we’ll see later on. 

 
 
 

 
 
The real stack is used to enter the complex number values, real and imaginary parts. The input 

sequence varies depending on the method used but all functions will expect the imaginary part in the Y 
register and the real part in the X register. More about this later. 
 

The contents of complex and real stack levels are automatically synchronized before and after each 
complex operation is performed. This may just involve real levels X,Y and complex level Z if it’s a 

monadic (or unary) operation requiring a single complex argument, or may also involve real levels Z,T 

and complex level W  if it’s a dual operation requiring two complex arguments. 

 
 
 

Monadic functions will assume that the real numbers in X,Y are the most up-to-date values for the 
real and imaginary parts of the complex argument. They will overwrite the contents of complex level Z. 

This allows quick editing and modification of the complex argument prior to executing the function. 

 
Dual functions will assume that the second argument is stored in W, that is level 2 of the complex 

stack, and will thus ignore the values contained in real stack registers Z,T.  Note that because the real 
stack overflows when trying to hold more than four different values, it is not a reliable way to input two 

complex numbers at once.   

 
The design objective has been to employ as much as possible the same rules and conventions as for 

the real number stack, only for complex numbers instead. This has been accomplished in all aspects of 
data entering, with the exception of automated complex stack lift: with a few exceptions, entering two 

complex numbers into the complex stack requires pressing ZENTER^ to separate them. 

 
Once again: entering two complex numbers into the complex stack is accomplished by executing 

ZENTER^ to separate the first and second complex number. Exceptions to this rule are the other 
complex-stack lifting functions, such as ZGEU, LASTZ, ZPI, ZRCL, ZRPL^, ZIMAG^, ZREAL^, 

^IM/AG, and the “Complex Keypad”. Here the left-side symbol “^” (SHIFT-N) represents an input 
action. 

 

 
 



(c) Ángel M. Martin – May 2021 

 

41Z Deluxe User Manual Page 11 of  124 
 

2.1 Rectangular vs. Polar forms. 
 

The HP-41 sorely lacks a polar vs. Rectangular mode. This limitation is also overcome on the 41Z 
module, with the functions POLAR and RECT to switch back and forth between these modes. It uses 

an internal flag in the complex buffer, not part of the 41 system flags. The operation is simplified in 
that complex numbers are always stored in their rectangular (or Cartesian) form, z=x+yi.  

 
So while all functions expect the argument(s) in rectangular form, yet the results are shown in the 
appropriate format as defined by the POLAR or RECT mode. (The notable exception is ZPOL, which is 

stored as values in Polar form). However, direct manual entry of complex in polar form is also possible 
using the ^IM/AG function described in the following pages. 

 
 

Note also that the POLAR mode is directly affected by the angular mode as well, as it occurs with real 

argument values. 
 

                                              

 

 
 

 
Note: The POLAR display of the complex number requires an additional R-P conversion after the result 

is calculated in Cartesian form. The Polar form is temporarily stored in the Real stack registers T,Z – 
which typically have no active role in the Complex Stack and therefore can always be used as scratch. 

Once again, no changes are made to either X,Y registers or Complex stack level Z. 
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2.2  Data Entry Conventions 

 
 

And how about complex number entering? Here the world divides in two camps, depending on whether 
the sequence is: “Re(z), ENTER^, Im(z)” – like on the HP-42S - , or its reverse: “Im(z), ENTER^, 

Re(z)” – like on the HP-32/33S and other FOCAL programs -. With the 41Z module you can do it either 

way, but it’s important to remember that regardless of how you introduce the numbers, all functions 
expect the imaginary part in the Y real-stack register and the real part in the X real-stack register. 
 
 

Fast data entry will typically use the sequence Im(z) , ENTER^, Re(z), followed by the complex 

function. This is called the “Direct” data entry, as opposed to the “Natural” data entry, which would first 
input the real part. The 41Z module includes the function “^IM/AG” that can be used to input the 

number using the “Natural” convention (reversed from the Direct one).  
 

Its usage is the same as the “i”-function on the HP-35s, to separate the real and the imaginary parts. 

The sequence is completed by pressing ENTER^ or R/S, after which the imaginary part will be left in 
the Y register and the real part in the X register as explained before. 

 
(Incidentally, the 42S implementation of the complex stack isn’t suitable for a true 4-level, since the 
COMPLEX function requires two levels prior to making the conversion!) 
 

Other functions and special functionality in the 41Z module can be used as shortcuts to input purely 

real or imaginary numbers more efficiently. For instance, to enter the imaginary unit one need only 

press: 1, ZIMAG^ (which is also equivalent to executing the IMAGINE function) – or simply “ZL, 

Radix, 1” using the “complex keypad”. And to enter 4 as a complex number, just press: 4, ZREAL^ - 

or simply “ZL, 4” using the “complex keypad”. 

 

Incidentally, the 42S implementation fails short from delivering a true 4-level stack, due to the 
COMPLEX function and the fact that it requires two stack levels to be available to combine the complex 

number. In this regard the 41Z solution is a better one. 
 

 

                  >   
  
Two (opposite) alternatives to data entry: COMPLEX key on the 42S, and ” ï” key on the 35S 
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3. User interface enhancements. 
 
Table-3.1: Functions to enhance the user interface. 
 

Index Function Group Description 

1 ZK?YN _ Usability Activates and deactivates the Complex Assignments 

2 ZL _ Usability Accesses most of the 41Z functions plus special features 

3 ZAVIEW _ _ Display Views complex number in X,Y (prompts for # decimal places) 

4 POLAR Display Displays complex numbers in Polar form 

5 RECT Display Displays complex numbers in Rectangular form 

6 ^IM/AG _ Usability Inputs Imaginary Part (or Argument) of complex number 

 

These functions facilitate the showing of the complex number on the display, and the conversion 
between the polar and rectangular forms. They enhance the usability by supplying a system to handle 

the lack of native complex number treatment capabilities of the calculator. 

 
 

3.1 Display mode and conversion functions.  
 

ZAVIEW _ __ _ Complex number AVIEW Uses ALPHA registers Prompts for # decimal places 

 

Shows the contents of the complex stack level Z in the display, using the current complex display mode 
(POLAR or RECT).: 

 
RECT:  Re(z) + J Im(z) ; where Re(z) is stored in register X and Im(z) in register Y. 

POLAR:  Mod(z) <| Arg(z); shown but not stored in the X,Y stack registers (!) 
 
Note that ZAVIEW uses the ALPHA register, thus the previous contents of the M, N and O registers will 

be lost. 
 

The displaying will respect the current DEG, RAD, or GRAD angular mode (in POLAR form), the current 

FIX, SCI or ENG settings. In RUN mode you have the choice to input the number of decimal places in 
the function’s prompt – whilst in Program it’ll use the selected settings on the calculator. Note that “J” 

precedes the imaginary part, as this improves legibility with real-life complex numbers, with decimal 
imaginary parts. 

 
For a enhanced visualization, ZAVIEW won’t show decimal zeros if the number is an integer. This is 

done automatically regardless of the number of decimal places selected in the calculator; so one can 

immediately tell whether the real or imaginary parts are true integers as opposed to having some 
decimal content hidden in the least significant places not shown. 

 

     versus:  
 

 
ZAVIEW will also extract common factor if both the real and imaginary parts are equal: 
 

     or also:  
 

 
Executing the functions POLAR and RECT will also display the complex number currently stored in X,Y 
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POLAR Sets POLAR mode on Displays number Shows in SET mode 

RECT Sets RECT mode on Displays number Shows in SET mode 

ZPOL  Convert to Polar  Converts X,Y to POLAR Always shows in POLAR 

ZREC Convert to Rectangular  Converts X,Y to RECT Shows in SET mode 

 

ZPOL Converts the complex number in the Z stack level from rectangular to polar mode. If executed in 
run mode, the display shows the value of its magnitude (its module) and its argument, as follows: 

 
  Mod  Arg ; where:   

Mod = |z| and Arg=    [z = |z|* e^i  

 
The argument value will be expressed in the angular settings currently selected: DEG, RAD, or GRAD. 

 

     equals   

     or also  

 
 

ZREC is the reciprocal function, and will convert the complex number in Z (assumed to be in polar 
form) to rectangular form, showing it on the display (in run mode) in identical manner as ZAVIEW. 

 
In fact, if it weren’t because of the displaying capabilities, these two functions will be identical to the 

pair R-P and P-R, standard on the calculator. Recognizing this, they’re assigned to the very same 

position as their real counterparts on the Complex User keyboard. 
 

Notice that contrary to the POLAR and RECT functions (which only display the values), ZPOL and 
ZREC perform the actual conversion of the values and store them in the stack registers (complex and 

real). This is also very useful to enter complex numbers directly in polar form, simply using the 

sequence: (direct data entry: Angle first, then modulus): 

 
-  Arg(z), ENTER^, |z|, ZREC  -> Re(z) + J Im(z) 

 

 

 
 

 

3.2 Complex Natural Data Entry. 
 
This function belongs to its own category, as an automated way to input a complex number using the 
“Natural” data entry convention: Real part first, Imaginary part next.  Its major advantage (besides 

allowing the natural data entry sequence) is that it performs a complex stack lift upon completion of 
the data entry, thus there’s no need to use ZENTER^ to input the complex number into the complex 

stack. That alone would justify its inclusion on the 41Z module. 

 
 

^IM/AG _ Inputs Im(z)/Arg(z) Part Does Stack Lift Prompting function 

 

The function will prompt for the imaginary part (or the argument if in POLAR mode) of the complex 
number being entered. The design mimics that on the HP-35S calculator, and it’s used as a way to 

separate the two complex parts during the complex number data entering. 
 
 
 
A few important considerations are: 
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• The real part (or module) must be introduced right before calling it, so it’s in X during the 

data entry. 

• The keyboard is redefined to allow for numeric digits, RADIX, CHS and EEX as only valid 
keys.  

• The radix symbol used (comma or dot) is controlled by the user flag 28. 

• Only one RADIX character will be allowed in the mantissa – and none in the exponent. 

• Only nine digits will be used for the mantissa, and two in the exponent. ^IM/AG will not 

check for that during the input process, but exceeding entries will simply be ignored. 

• Only one EEX can exist in the imaginary part - ^IM/AG will check for that. 

• Only one CHS can be used for the mantissa sign, ^IM/AG will check for that. 

• Multiple CHS can be used for the exponent sign, but ^IM/AG will apply the arithmetic 

rules to determine the final sign as follows: odd number is negative, even number is 
positive. 

• Pressing Back Arrow will remove the last entry, be that a number, Radix, EEX or CHS. If 

the entry is the first one it will cancel the process and will discard the real part as well. 

• The sequence must be ended by pressing ENTER^ or R/S. 

• The display cue is different depending on the actual complex mode (RECT or POLAR), and 
it’s controlled automatically. 

• Upon completion, the complex number is pushed into the Z complex stack level, and 

placed on the X,Y real stack registers as well following the same 41Z convention: real part 
in X and imaginary part in Y. The complex stack is lifted and the real stack is synchronized 

accordingly. 

 
The screens below show usage examples in RECT and POLAR modes: 

 

     until finally:  

    ending as:     

 
 

Note: To extract the numeric value from the input string, ^IM/AG executes the same code as the X-
function ANUM. All conversion conventions will follow the same ANUM logic. Suffice it to say that the 

implementation of ^IM/AG is not absolute perfect and you can trip it up if that’s what you really want 

– but it should prevent likely errors that could yield incorrect results.  It’s a very convenient way to 
meet this need solving the diverse issues associated with its generic character. 

 
If the input string doesn’t yield any sensible numeric result, the message “SYNTAX ERROR” is briefly 

shown in the display, and the stack is restored to its status prior to executing ^IM/AG. 
 

    will trigger:  

 

 
Some apparently incorrect syntax constructions will however be properly interpreted by ^IM/AG, 
returning a valid imaginary part. This is for instance the case with multiple negative signs in the 

exponent, or decimal values after negative sign in the mantissa. Such is the flexibility of the ANUM 
function! 

 
 
 
 
Example: Vector Load addition (taken from the 35s User Guide):- 
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We start by setting POLAR and DEG modes, then using the ^IM/AG function three times will set the 

three complex numbers on the complex stack, and finally simply execute the complex addition function 
Z+ twice: 

 

 
POLAR, DEG 

185, ^IM/AG,  62,  ENTER^ 
170, ^IM/AG,  143, R/S 

100, ^IM/AG,  261, R/S 

Z+, Z+ 
 

Result: -> 178,9372 <) 111,1489 
 

Or in Rectangular mode (as it’s saved in 
XY): 

RECT ->  -64,559 + J166,885 

 
 

 
 

 

Note the following points: 
 

• We used indistinctly ENTER^ and R/S to terminate the complex number entry.  

• No need to store intermediate results as the complex buffer can hold up to four levels.  

• We didn’t need to use ZENTER^ to push the complex numbers into the complex stack 

because the stack-lift was performed by ^IM/AG. 
 

 

With regard to the data entry sequence, one could have used ZREC instead of ^IM/AG – albeit in 
that case it would have been in “direct mode”, as opposed to the more intuitive natural convention. It 

also requires pressing ZENTER^ to push each number into the complex stack. 
 

This is the keystroke sequence and partial results (assuming we’re in POLAR mode) 
 

62, ENTER^, 185, ZREC, ZENTER^  -> 185 <)62 

143, ENTER^, 170, ZREC, ZENTER^  -> 170 <)143 
261, ENTER^, 100, ZREC    -> 100 <)-99 

Z+, Z+      -> 178,9372 <) 111,1489 
 

 
 
One last remark about data displaying vs. data entry.- As it was explained before, ZPOL will 

convert the complex number into Polar coordinates, and it will be displayed in POLAR form even if 
RECT mode is selected. This is the single one exception all throughout the 41z module, and it will only 

work immediately after pressing ZPOL but not for subsequent executions of ZAVIEW – which always 
expects the number is stored in rectangular form, and therefore will show an incorrect expression.
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3.3 The Complex User Assignments. 
 

 
The 41Z module provides a convenient way to do user key assignments in masse. Given the 

parallelisms between the real and complex number functions, the natural choice for many of the 
functions is “predetermined” to be that of their real counterparts.  

 
A single function is used for the mass-assignment (or de-assignment) action: 

 
ZK?YN _  Complex User Assignments  Prompting function 

 

ZK?YN automates the assignment and de-assignment of 37 functions. It prompts for a Yes/No answer, 
as follows: 

 

• Answering “Y” will assign the complex functions to their target keys 

• Answering “N” will de-assign them, and 

• Pressing “Back Arrow” will cancel the function – and display the Z-level content. 

• Any other key input (including ON) will be ignored. 
 

 

The assignment action will be indicated by the message “Z-KEYS: ON” or “Z-KEYS OFF” in the display 
during the time it takes to perform, followed by “PACKING” – and possibly “TRY AGAIN” should the 

enough number of memory registers not exist.  
 

Note that ZK?YN is selective: any other key assignment not part of the complex functions set will not 
be modified. 

 

 
                                  Table 3.3. Complex key assignments done by ZK?YN 
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3.4 The Complex Keyboard. 
 
 
As good as the user assignments are to effectively map out many of the 41Z functions, this method is 

not free from inconveniences. Perhaps the biggest disadvantage of the Complex Assignments is that it’s 
frequently required to toggle the user mode back and forth, depending on whether it’s a complex or a 

real (native) function to be executed.  

 
Besides that, the Complex Assignments consume a relative large number of memory registers that can 

be needed for other purposes. Lastly, there are numerous 41Z functions not included on the user 
assignments map, and no more “logical” keys are available without compromising the usability of the 

calculator. 
 

To solve these quibbles, the 41Z module provides an alternative method to access the majority of the 

complex functions, plus some unique additional functionality.  It’s called the Complex Keyboard, 

accessed by the function ZL: a single key assignment unleashes the complete potential of the module, 

used as a complex prefix, or in different combinations with the SHIFT key and with itself. 

 
 

Figure 3.4. Complex Keyboard overlay (with ZL assigned to Sigma+). 
On the left: the version for V41. On the right, for i41CX 

      

                                            
    © 2009 M. Luján García. 

 
The 41Z overlay can be downloaded from the HP-41 archive website, at: 

 http://www.hp41.org/LibView.cfm?Command=View&ItemID=893  

 

To use it with V41 emulator, replace the original file “large.bmp” in the V41 directory with the 41Z 
bitmap file, after renaming it to the same file name. 

 

 
 

http://www.hp41.org/LibView.cfm?Command=View&ItemID=893%20
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Here’s how to access all the functions using ZL: 

 

• Direct functions. Simply press “Z” as a prefix to denote that the next function will operate on 

a complex argument, and not on a real one.  These functions don’t have any special marks, as 

they correspond to the standard functions on the HP-41 keyboard. There are twenty 41Z 
functions directly accessible like these. 

 
Examples:  Pressing Z, LN will execute ZLN; pressing Z, COS will execute ZCOS, etc… 

Pressing Z, + will execute Z+; pressing Z, R/S will execute ZAVIEW,  
 

 
• Shifted functions. Press “Z” followed by the SHIFT key.  These functions are either marked 

in blue when different from the standard SHIFTED ones, or just marked in yellow as part of the 
standard HP-41 keyboard (like x=y?, which will execute Z=W? if the pressed key sequence is 

this: Z, SHIFT, x=y? 
 

Examples:  pressing Z, SHIFT, LN will execute ZEXP; pressing Z, SHIFT, SIN will execute ZASIN,  

Pressing Z, SHIFT, R/S will execute ZVIEW (a prompting function itself). 
 

There are thirty-one 41Z functions accessible using this SHIFTED method. 
 

 
• Dual (alternate) functions. Press “Z” twice as a double prefix to access the dual complex 

functions and many others. These functions are marked in red, on the right side of each 

available key. 

 
Examples: Pressing Z, Z, 7 will execute ZWDET; pressing Z, Z, 5 will execute ZWCROSS, , and so on 

with all the “red-labeled” keys. 
 

Pressing Z, Z, ENTER^ will execute ZREPL; pressing Z, Z, Z will execute Z<>U 

There are twenty-five 41Z functions accessible using this Dual method. 
 

 
• Multi-value functions.  As a particular case of the dual functions case above, the ZNEXT 

function group is enabled by pressing “Z” twice and then SHIFT. This group is encircled on the 

keyboard overlay, and sets the five multi-value functions as follows: NXTASN, NXTACS, 

NXTATN, NXTLN, and NXTNRT (this one will also prompt for the root order, as an integer 
number 0-9). 

 
Notice that pressing SHIFT while in the NEXT section toggles the display to “ZBSL”. Use it as a shortcut 

to access the different Bessel functions of first and second kind provided in the 41, as follows: ZJBS, 
ZIBS, ZKBS, and ZYBS. – as well as EIZ/IZ, a particular case of Spherical Hankel h1(0,z). 

 

 

• Hyperbolic functions. Press “Z” followed by SHIFT twice  to access the three direct 
hyperbolics. Pressing SHIFT a third time will add the letter “A” to the function name and will 

enable the inverse functions. This action toggles with each subsequent pressing of SHIFT. 
(Watch the 41Z building up the function name in the display as you press the keys…) 

 

Example: Pressing Z, SHIFT, SHIFT, SHIFT, SIN will execute ZASINH 
 

 

• Complex Keypads. Press “Z” followed by a numeric key (0 to 9) to enter the corresponding 
digit as a complex number in the complex stack. Pressing “Z” followed by the Radix key, and 

then the numeric key will input the digit as an imaginary number as opposed to as a real 
number into the complex stack. This is a very useful shortcut to quickly input integer real or 

imaginary values for complex arithmetic or other operations (like multiplying by 2, etc.) 
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Pressing Z, XEQ calls the function ^IM/AG for the Natural Data entry. This is obviously not shown on 

the keyboard – which has no changes to the key legends for un-shifted functions. Note that there are 
three different ways to invoke ^IM/AG, as follows: 

 

XEQ, ALPHA, SHIFT, N, I, M, /, A, G, ALPHA   -> the standard HP-41 method, or: 
Z, SHIFT, ENTER^     -> shown in blue in the overlay, or: 

Z, XEQ      -> not shown. 

 
 

• Other keystrokes. The 41Z module takes control of the calculator keyboard when ZL is 

executed. Available keys are determined by the partial key sequence entered, as defined on the 
41Z Keys overlay and as explained above. Pressing USER or ALPHA will have no effect, and 

pressing ON at any time will shut the calculator off. The back arrow key plays its usual 
important role during data entering, and also undoes the last key pressed during a multi-shifted 

key sequence.  Try it by yourself and you’ll see it’s actually easier than giving examples on how 

it works here. 
  

 
In summary: a complete new keyboard that is accessed by the “Z” blue prefix key. This being the only 

requisite, it’s a near-perfect compromise once you get used to it – but if you don’t like it you can use 

the User Assignments , the choice is yours. 
 

 
 

Quick Recap: 

 

The figure below shows the main different modes of the ZL function, the real cornerstone of the 41Z 

module: 

 
SHIFT SHIFT SHIFT     

Blue Functions Green Functions Shift Green Fns

RADIX RADIX

ZPAD for di rect entry

ZKBRD SHIFT SHIFT    

Red Functions Circled Functions Shift Circled Fns

STO

ZSTO Math functions  
 
 
Press the Back-arrow key to bring the command chain back to the starting point (ZL). Pressing it twice 

shows “NULL” and cancels out the sequence. 

 
Pressing non-relevant keys (i.e. those not supposed to be included in the corresponding mode) causes 

the display to blink, and maintain the same prompt (no action taken). 
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4. Stack and Memory functions. 
 
 

Let Z and W be the lower two levels of the complex stack, and “z” and “w”  two complex numbers 

stored in Z and W respectively.  Z  = Re(z)+ j Im(z);  W = Re(w) + j Im(w) 
 

Note the use of “j“ to express the imaginary unit, instead of “i“ . This isn’t done to favor those EE’s in 

the audience (you know who we are), but rather due to the displaying limitations of the 41 display: no 
lower-case letters for either i or j, and better-looking for the latter one in caps. 

 
Note also that despite their being used interchangeably, the complex stack register “Z” – in bold font – 

and the real stack register “Z” – in regular font – are not the same at all. 

 
 

Table-4.1: Stack and memory function group. 
 

Index Function Name Description 

1 ZTRP Re(z)<>Im(z) Exchanges (transposes) Re and Im for number in level Z. 

2 ZENTER^ Complex ENTER^ Enters X,Y into complex level Z, lifts complex stack.  

3 ZREPL Complex Stack Fill Fills complex stack with value(s) in X,Y 

4 ZRDN Complex Roll Down Rolls complex stack down 

5 ZRUP Complex Roll Up Rolls complex stack up 

6 ZREAL^ Inputs real Z Enters value in X as real-part only complex number 

7 ZIMAG^ Inputs imaginary Z Enters value in X as imaginary complex number 

8 Z<>W Complex Z<>W Swaps complex levels Z and W  

9 (*) Z<>ST _ _  Complex Z<> level Swaps complex levels Z and any stack level (0-4) 

10 (*) ZRCL _ _ Complex Recall Recalls complex number from memory to level Z 

11 (*) ZSTO _ _ Complex Storage Stores complex number in Z into memory 

12 (*) Z<> _ _ Complex Exchange Exchanges number in level Z and memory 

13 (*) ZVIEW _ _ Complex Display Shows Complex number stored in memory register 

14 CLZ Clears Level Z Deletes complex level Z 

15 CLZST Clears Complex Stack Clears all complex levels U, V, W, and Z 

16 ZREAL Extracts real part Removed. Replace with: X<>Y, CLX, X<>Y 

17 ZIMAG Extracts Imag part Removed. Replace with: CLX 

18 LASTZ Last number used Recovers the last complex number used 

 

(*) Note: These functions are fully programmable. When used in a program their argument is taken 
from the next program line, see below for details. 
 
 

4.1 Stack and memory functions group. 
 

Let’s start with the individual description of these functions in more detail, beginning with the simplest. 
 

ZTRP Z Transpose Does Re <>Im  

 

This function’s very modest goal is to exchange the real and imaginary parts of the complex number 
stored in the Z level of the complex stack. 

 
Hardly a worthwhile scope, you’d say, considering that the standard function X<>Y does the same 

thing? Indeed it is quite similar (and as such it’s logically assigned to the shifted X<>Y key). But it’s not 

quite the same, as in run mode ZTRP also shows on the display the complex number after transposing 
their real and imaginary parts. Besides, as it was mentioned in the introduction, this function may play 

an important role during data entry: it is the one to use when entering the real part first, as per the 
following sequence: Re(z),  ENTER^,  Im(z),  ZTRP 
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Thus its use is analogous to the “COMPLEX” function on the HP-42S, also required to enter the complex 

number in the stack, from its two real components. Note that the other, alternative data entering 
sequence doesn’t require using ZTRP, although the order of the real and imaginary parts is reversed 

(and arguably less intuitive): Im(z),  ENTER^,  Re(z).  Either one of these two is entirely adequate 

once you become familiar with it and get used to using it -  it’s your choice. 
 

 
 

ZENTER^ Enters X,Y into levels Z, W  Does Stack lift   

ZRPL^ Fills complex stack   

 

ZENTER^ enters the values in X,Y as a complex number in the Z stack level, and performs stack lift 
(thus duplicates Z into W as well – and U is lost due to the complex stack spill-over).  As said in the 

introduction, always use ZENTER^ to perform stack lift when entering two (or more) complex 
numbers into the complex stack. This is required for the correct operation of dual complex functions, 

like Z+, or when doing chain calculations using the complex stack (which, unlike the real XYZT real 
stack, it does NOT have an automated stack lift triggered by the introduction of a new real number). 

 

 

  
  

 
ZRPL^ simply fills the complex stack with the values in the real registers X,Y. This is convenient in 

chained calculations (like the Horner method for polynomial evaluation). If executed in run mode it also 
displays the number in Z.  This is in fact a common characteristic of all the functions in the 41Z 

module, built so to provide visual feedback on the action performed. 

 
 

ZREAL^ Enters X in Z as (x+j0) Does Stack Lift  

ZIMAG^ Enters  X in Z as (0+jX) Does Stack Lift   

 
These functions enter the value in X either as a purely real or purely imaginary number in complex 

form in the Z stack level, and perform stack lift. If executed in run mode it also displays the number in 
Z upon completion. 

 

 
 

CLZ Clears complex stack level Z   

CLZST Clears complete complex stack   

ZREAL Extracts Real part from Z Sub-function X<>Y, CLX, X<>Y 

ZIMAG Extracts Imaginary part from Z Sub-function CLX 

 
Use these four functions to partially or completely clear (delete) the contents of the complex stack Z 

level, or the complete complex stack. No frills, no caveats. The real stack will also be cleared 
appropriately. Note that contrary to the real CLX function, the execution of CLZ will save the complex 

number in the complex LastX level “S”. 
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Z<>ST _ Exchanges Z and Stack  Level# = 0,1,2,3,4 Prompting function (*) 

Z<>W Exchanges Z and W   

(*) Fully programmable, see note in following pages. 

 
Use these functions to swap the contents of the Z and U/V/W levels of the complex stack respectively. 

As always, the execution ends with ZAVIEW in run mode, displaying the new contents of the Z 

register.(which is also copied into the XY registers). 
  

 

 
 

LASTZ Recalls last number used to Z Does Stack Lift  

 

Similar to the LASTX function, LASTZ recalls the number used in the immediate preceding operation 
back to the Z level of the complex stack. A complex stack lift is performed, pushing the contents of Z 

up to the level W, and losing the previous content of U. 

 

 

The majority of functions on the 41Z module perform an automated storage of their argument into the 
LastZ register, enabling the subsequent using of LASTZ.  This will be notated in this manual when 

appropriate under each function description. 
 

Example: to calculate [(z2 + z)/2] simply press: Z^2, LASTZ, Z+, ZHALF 

 
Example: Calculate the following expression without using any data registers: 

 
F(z) = Ln [ z + SQR(z^2 + 1)], for z= 20+20i 
 
Solution: 

 2 ,  0 ,  ENTER^ ,  ZRPL  -> puts 20+20i in all 4 levels of the complex stack 

 Z^2 ,  1 , ZREAL^,  Z+  -> could have used “1, +” as a more direct method 

 ZSQRT ,  Z+ ,  ZLN    -> 4,035+J0,785 

 
Congratulations! You just calculated the hyperbolic arcsine of (20+20i). 
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ZRDN Rolls complex stack down   

ZRUP Rolls complex stack up    

 

Like their real stack counterparts, these functions will roll the complex stack down or up respectively. If 
executed in run mode it also displays the number in Z. Real stack registers will be synchronized 

accordingly. 

 

 
 

Be aware that although ZRDN and ZRUP do not perform stack lift, they update the Z complex register 
with the values present in X,Y upon the function execution. This behavior is common across all 41Z 

functions. 

 
 

 

ZVIEW _ _ Displays Complex Register value  Prompting function 

Z<> _ _ Exchanges Z and complex register   Prompting function 

 
Like its real counterparts, these functions view or exchange the content of the complex stack level Z 

with that of the complex storage register given as its argument. Two standard storage registers are 
used, as per the above description. 

 

 

 
 

ZRCL _ _  Recall from Complex Register Does Stack lift Prompting function 

ZSTO _ _ Store in Complex Register  Prompting function 

 
Like their real counterparts, these functions are used to Recall or store the complex number in Z from 

or into the complex register which number is specified as the function’s argument. In fact two (real) 
storage registers are used, one for the imaginary part and another for the real part. This means that 

ZRnn corresponds to the real storage registers R2nn and R(2nn+1). 
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ZRCL will perform complex stack lift upon recalling the contents of the memory registers to the Z stack 

level. Also note that, following the 41Z convention, ZSTO will overwrite the Z level with the contents of 
X,Y if these were not the same. This allows walk-up complex data entering. 

 

These functions are fully programmable. When in program mode (either running or SST execution), 
the index input is taken from the following program line after the function. For this reason they are 

sometimes called non-merged  functions. In fact, the number denoting the argument can have any 
combination of leading zeroes (like 001, 01, 1 all resulting in the same). Moreover, when the argument 

is zero then such index line can be omitted if any non-numeric line follows the function. This saves 

bytes and makes programs more legible. 
 

The original implementation was written by W. Doug Wilder, and it was almost as powerful and 
convenient as the one used by the HEPAX module for its own multi-function groups.  I enhanced it 

further with an automated parameter input feature: when entered into a program, the index input will 
be added automatically in a second program line by the function. 

 

Similar to the real counterparts, keys on the first two rows can be used as shortcut for indexes 1-10.  
 

Note that indirect addressing is also supported  (say ZRCL IND _ _) pressing the SHIFT key. Also 
note that in the Deluxe edition of the 41Z, their logic fully supports the use of the complex stack 

registers (i.e. ZRCL ZL _ followed by a Z-stack level: {U, V, W, Z, and S}) pressing the RADIX 

key; as well as the combination of both indirect and stack addressing (i.e.  ZRCL IND ST _ _  
followed by a REAL stack / data register number) sequentially pressing the SHIFT and RADIX 

keys.  This extends the model of the native calculator functions to the complex data registers, where 
obviously an indirect pointer is always a real number by definition. 

 

For example: 
 

,      
 

Where the left prompt will only allow for one of the five compelx Z-Stack levels letters, and the right 

prompt will allow for any of the 16 choices available as real stack (including the synthetic registers as 
well - be careful with those!). 

 
 

Note that as of revision “O” of the Library#4 module, in program mode the argument entered by the 

function will be automatically entered in the second program step for the IND, ZL, and IND ST cases. 
In fact the indirect addressing is nothing more that adding 128 to the address, (or 0x80 Hex) thus it is 

handled by simply adding such factor to the index in the prompt line. Similarly, by adding 112 (or 0x70 
Hex) for complex Z-stack levels, or the addition of both 0x80- and 0x70 (i.e. 240) for the IND ST 

combination. 
 

Lastly, a NONEXISTENT message will be shown if the storage register pointed at is not available in 

main memory. Registers can be made available using the SIZE function of the calculator. 
 

Note for advanced users:  Pressing the EEX key will also activate the prompt-lengthener adding a third 
field to the prompt.  This is of limited usability since for Complex registers it would require setting a real 

SIZE above 200 in the calculator.  
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4.2. ZSTO/ZRCL Math function groups.             

 
Function Name  Comments 

ZST+ _ _  Store Adding to ZReg  Prompting function 

ZST- _ _ Store subtracting from ZReg  Prompting function 

ZST* _ _  Store multiplying to ZReg  Prompting function 

ZST/_ _ Store Dividing by ZReg  Prompting function 

ZRC+ _ _ Add ZReg to  Z  Prompting function 

ZRC- _ _ Subtract ZReg from Z  Prompting function 

ZRC* _ _ Multiply Z by ZReg   Prompting function 

ZRC/ _ _ Divide Z by ZReg   Prompting function 

 
One of the newest additions to the 41Z function set.- allow storage and recall math in a concise format, 

saving bytes and programming steps in FOCAL programs. Their equivalence with standard functions 

would have to be done using four steps, and disturbing the Complex Stack as follows: 
 

1.- ZENTER^,       
2.- Z<>(nn) 

3.- MATH (Z+, Z-, Z*, Z/) 

4.- Z<>(nn) 
 

With the support of Z-stack registers and INDirection it is possible to use the same shortcuts and 
conviniencies as there are available for the real case in the standard calculator. For example to multiply 

a number by two you use ZST+, RADIX, “Z” : 

 

 
 
 

Which expects a letter representing the complex stack. i.e. {Z, W, U, V}, and “S” for LastZ. 
 

Complex Stack manipulation is now simply a matter of using Z<> _ _ with the corresponding Z-stack 

level letter in the RADIX prompts. Not to be confused with the stack level# input required by the 
function Z<>ST _ _, which only allows decimal values between 1-5 as valid entries. Similar but not the 

same – in particular when if comes to INDirection. 
 
These functions are fully programmable  using the same non-merged technique described in the 
previous page for the standard cases. Like them, the argument is automatically entered by the function 

as a second program line. The same considerations apply for Z-Stack and indirect registers, which are 

automagically entered in the non-merged program step. 
 

The RCL/STO Math functions can be accessed directly from the ZRCL and ZSTO prompts by pressing 
the corresponding arithmetic key. In fact, you can “navigate” you way about all the choices between 

the three memory access functions ZRCL, ZSTO and Z<> as well as their arithmetic extensions 

(excluding Z<>) simply by pressing any of the appropriate keys during the prompts of any of them.  
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5. Complex Math. 

 
Complex numbers are much more than a simple extension of the real numbers into two dimensions. 

The Complex Plane is a mathematical domain with well-defined, own properties and singularities, and it 
isn’t in the scope of this manual to treat all its fundamental properties. On occasions there will be a 

short discussion for a few functions (notably the logarithms!), and some analogies will be made to their 
geometric equivalences, but it is assumed throughout this manual that the user has a good 

understanding of complex numbers and their properties. 

 
 

5.1. Arithmetic and Simple Math. 
 

 

Table-5.1:- Arithmetic functions. 
 

Index Function Formula Description 

1 Z+ Z=w+z Complex addition 

2 Z- Z=w-z Complex subtraction 

3 Z* Z=w*z Complex multiplication 

4 Z/ Z=w/z Complex division 

5a ZINV Z=1/z Complex inversion, direct formula 

5b 1/Z Z=1/r e^(-iArg) Complex inversion, uses TOPOL 

6 ZDBL z=2*z Sub-function. Can be replaced with: 2, ST* Z, * 

7 ZHALF z= z/2 Sub-function. Can be replaced with: 2. ST/ Z, / 

8 ZRND Z=rounded(z) Rounds Z to display settings precision 

9 ZINT Z=Int(z) Takes integer part for Re(z) and Im(z) 

10 ZFRC Z=Frc(z) Takes fractional part for Re(z) and Im(z) 

11 ZPI* Z=z  Simple multiplication by pi 

 

Here’s a description of the individual functions within this group. 

 
Z+ Complex addition Z=w+z Does LastZ 

Z- Complex subtraction Z=w-z Does LastZ 

Z* Complex multiplication Z=w*z Does LastZ 

Z/ Complex division Z=w/z Does LastZ 

 
Complex arithmetic using the RPN scheme, with the first number stored in the W stack level and the 

second in the Z stack level. The result is stored in the Z level, the complex stack drops (duplicating U 

into V), and the previous contents of Z is saved in the LastZ register. 
 

 

ZINV Direct Complex inversion Z=1/z Does LastZ 

1/Z Uses POLAR conversion Z=1/r e^(-iArg) Does LastZ 

 

Calculates the reciprocal of the complex number stored in Z. The result is saved in Z and the original 

argument saved in the LastZ register. Of these two the direct method is faster and of comparable 
accuracy – thus it’s the preferred one, as well as the one used as subroutine for other functions. 

 
This function would be equivalent to a particular case of Z/, where w=1+0j, and not using the stack 

level W. Note however that Z/ implementation is not based on the ZINV algorithm [that is, making 
use of the fact that : w/z = w * (1/z)], but based directly on the real and imaginary parts of both 

arguments. 
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Example. Calculate z/z using ZINV for z=i 

 
We’ll use the direct data entry, starting w/ the imaginary part: 

 

1, ENTER^, 0, ZINV   -> 0-j1 
LASTZ     -> 0+j1 

Z*     -> 1+j0 
 

Note that integer numbers are displayed without decimal zeroes, simplifying the visual display of the 

complex numbers. 
 

 

ZDBL  Doubles Z Z=2*z Does LastZ 

ZHALF Halves Z Z=z/2 Does LastZ 

 

These two sub-functions are provided to save stack level usage and programming efficiency. The same 
result can also be accomplished using their generic forms (like Z* and Z/, with w=2+0j), but the 

shortcuts are faster and simpler to use. 

 
 

Example.  Taken from the HP-41 Advantage manual, page 97. 
 

Calculate: z1/(z2+z3);  for: z1=(23+13i);    z2=(-2+i),   and z3=(4-3i) 

 
If the complex stack were limited to 2 levels deep, we would need to calculate the inverse of the 

denominator and multiply it by the numerator, but using the 4-level deep complex stack there’s no 
need to resort to that workaround. We can do as follows: 

 
13, ENTER, 23, ZENTER^  ->  23+j13 

1, ENTER^, 2, CHS, ZENTER^  -> -2+j1 

3, CHS, ENTER^, 4, Z+   ->  2(1-j) 
Z/     ->  2,500+j9 

 
Note that 41Z automatically takes common factor when appropriate, and that integer numbers are 

displayed without decimal zeroes to simplify the visuals display of the complex numbers. Non-integers 

are displayed using the current decimal settings, but of course full precision (that is 9 decimal places) is 
always used for the calculations (except in the rounding functions). 

 
 

ZRND Rounds Complex number Z=Rounded(z) Does LastZ 

ZINT Takes integer parts Z=Int[Re(z)+jInt[Im(z) Does LastZ 

ZFRC Takes Fractional parts Z=Frc[Re(z)+jFrc[Im(z) Does LastZ 

 
These functions will round, take integer part or fractional part both the real and imaginary parts of the 

complex number in Z. The rounding is done according to the current decimal places specified by the 

display settings. 

 
 
ZPI* Multiplies by pi Z= *z Does LastZ 

 
Simple multiplication by pi, used as a shortcut in the Bessel FOCAL programs. Has better accuracy than 

the FOCAL method, as it used internal 13-digit math. 
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5.2. Exponential and powers that be. 
 

Table-5.2: Exponential group. 
 
Index Function Formula Description 

1a ZEXP Z=REC(e^x, y) Complex exponential (method one) 

1b E^Z See below Complex Exponential (method two) 

2 Z^2 Z=REC(r^2, 2 ) Complex square 

3a ZSQRT Algebraic Formula Principal value of complex square root 

3b SQRTZ Z=REC(r^1/2, /2) Principal value of complex square root 

4 W^Z Z=e^z*Ln(w) Complex to complex Power 

5 W^1/Z Z=e^1/z*Ln(w) Complex to reciprocal complex Power 

6 X^Z Z=e^z*Ln(x) Real to complex power 

7 X^1/Z Z=e^z*Ln(x) Real to reciprocal complex power 

8 Z^X Z=e^x*Ln(z) Complex to real Power 

9 Z^1/X Z=e^1/x*Ln(z) Complex to reciprocal real Power 

10 ZALOG Z=e^z*Ln(10) Complex decimal power 

11 NXTRTN Z=z*e^j 2 /N Next value of complex nth. Root 

 

Looking at the above formula table it’s easy to realize the importance of the exponential and 
logarithmic functions, as they are used to derive many of the other functions in the 41Z module. It is 

therefore important to define them properly and implement them in an efficient way. 

 
The 41Z module includes two different ways to calculate the complex exponential function. The first 

one is based on the trigonometric expressions, and the second one uses the built-in polar to 
rectangular routines, which have enough precision in the majority of practical cases. The first method is 

slightly more precise but takes longer computation time. 

 
 

ZEXP Complex Exponential Z=REC(e^x, y) Does LastZ 

E^Z Complex Exponential Trigonometric Does LastZ 

 

One could have used the rectangular expressions to calculate the result, as follows: 

 
e^z = e^x * (cos y + i sin y), thus: Re(z) = e^(x) * cos y  ; and:  Im(z) = e^(x) * sin y 
 
and this is how the sub-function E^Z has been programmed. It is however more efficient (albeit 

slightly less precise) to work in polar form, as follows: 

 
since z= x+iy, then e^z = e^(x+iy) = e^x * e^iy, 
 
and to calculate the final result we only need to convert the above number to rectangular form. 

 
 
Example.- Calculate exp(z-2), for z=(1+i) 

 
1, ENTER^, ZENTER^   ->  1(1+j)   

2, CHS, Z^X    ->  0 – j 0,500   
ZEXP      ->  0,878 – j 0,479 

 

Another method using W^Z and the complex keypad function (ZREAL^): 
 

1, ENTER^, ZENTER^   ->  1(1+j) 
2, CHS, ZREAL^   -> -2 + j 0 

W^Z,  ZEXP    ->  0,878 – j 0,479 
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or alternatively, this shorter and more efficient way: (leaves W undisturbed) 

 
1, ENTER^, Z^2, ZINV, ZEXP -> 0,878 – j 0,479 

 

Note how this last method doesn’t require using ZENTER^ to terminate the data input sequence, as 
the execution of monadic functions will automatically synchronize the complex stack level Z with the 

contents of the real X,Y registers. 
 

 

Z^2 Complex square Z=REC(r^2, 2 ) Does LastZ 

ZSQRT Complex square root Algebraic Formula Does LastZ 

SQRTZ Complex square root Z=REC(r^1/2, /2) Does LastZ 

 

Two particular cases also where working in polar form yields more effective handling. Consider that: 

 
Z^2 = |z|^2 * e^2i,    and: 

Sqrt(z) = z^1/2 = Sqrt(|z|) * e^i,  where =Arg(z), 

 
It is then simpler first converting the complex number to its polar form, and then apply the individual 

operations upon its constituents, followed by a final conversion back to the rectangular form. 
 

Note that this implementation of ZSQRT only offers one of the two existing values for the square root 

of a given complex number. The other value is easily obtained as its opposite, thus the sum of both 
square roots is always zero. 

 
Such isn’t exclusive to complex arguments, for the same occurs in the real domain – where there are 

always 2 values, x1 and –x1, that satisfy the equation SQRT[(x1)^2]. 
 

As with other multi-valued functions, the returned value is called the principal value of the function. See 

section 6 ahead for a more extensive treatment of this problem. 
 

 
 

W^Z Complex to complex Power Z=e^[z*Ln(w)] Does LastZ 

W^1/Z Complex to reciprocal Power Z=e^[Ln(w)/z] Does LastZ 

 

The most generic form of all power functions, calculated using the expressions: 

 
w^z = exp[z*Ln(w)], and 
w^1/z = exp[Ln(w) / z] 

 
The second function is a more convenient way to handle the reciprocal power, but it’s obviously 
identical to the combination ZINV, W^Z. 

 
 
Example: calculate the inverse of the complex number 1+2i using W^Z:- Then obtain its reciprocal 

using ZINV to verify the calculations. 
 

2, ENTER^, 1, ZENTER^ number stored in level W (also as: 1, ENTER^, 2, ZTRP) 
0, ENTER^, -1   exponent –1 stored in level Z  (also as:  -1, ENTER^, 0, ZTRP) 

W^Z    result: 0,200 – j 0,400      
ZINV    result: 1,000 + j 2  

 
Note that the final result isn’t exact – as the decimal zeroes in the real part indicate there’s a loss of 
precision in the calculations. 
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Z^X Complex to real power Z=e^[x*Ln(z)] Does LastZ 

Z^1/X Complex to reciprocal real Z=e^[Ln(z)/x] Does LastZ 

X^Z Real to complex power Z=e^[z*Ln(x)] Does LastZ 

X^1/Z Real to reciprocal complex Z=e^[1/z*Ln(x)] Does LastZ 

ZALOG 10 to complex power Z=e^[z*Ln(10)] Does LastZ 

 

 
These five functions are calculated as particular examples of the generic case W^Z. Their advantage is 

a faster data entry (not requiring inputting the zero value) and a better accuracy in the results 
 

Z^1/X is identical to: 1/X, Z^X 
X^1/Z is identical to: RDN, ZINV, R^, X^Z 

 

Data entry is different for hybrid functions, with mixed complex and real arguments. As a rule, the 
second argument is stored into its corresponding stack register, as follows: 

 

• x into the real stack register X for Z^X and Z^1/X 

• z into the complex stack register Z for X^Z and X^1/Z 
 

The first argument needs to be input first, since this is an RPN implementation. 

 
Because ZALOG is a monadic function, it expects z in the stack level Z, and thus it doesn’t disturb the 

complex stack. 
 

 
Example: Calculate (1+2i)^3 and  3^(1+2i) 

 

2, ENTER^, 1, ZENTER^, 3, Z^X  results: (1+2i)^3 = -11 – j 2  
2, ENTER^, 1, ZENTER^, 3, X^Z results:  3^(1+2i) = -1,759 + j 2,430 

 
 
Example:  Verify the powers of the imaginary unit, as per the picture below.- You can use either Z^X, 

with z=(0+i) and x=1,2,3,4,5; or alternatively W^Z, with w=(0+i) and z=(1+0i), (2+0i), (3+0i), etc. 
 

 

This keystroke sequence will quickly address the even powers: 
 

0, ENTER^, 1, ZTRP   ->   0 + j1 i 
Z^2     ->  -1 + j0 i2 = -1 

Z^2     ->   1 + J0 i4 =  1 
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Whilst this will take care of the rest (and also in general): 

 
0, ENTER^, 1, ZTRP  ->   0 + j1 i 

3, Z^X    ->   0 -  j1 i3 = -i 

LASTZ    ->   0 + j1 
5, Z^X    ->   0 + j1 i5 =  i 

 
Note in this example that for enhanced usability Z^X stores the original argument in the LastZ register, 

even though it wasn’t strictly located in the Z level of the complex stack. The same behavior is 

implemented in X^Z. 
 

Alternatively, using W^Z and ZREPL: 
 

1, ENTER^, 0, ZREPL  ->   0 + j1 i 
0, ENTER^, 2, W^Z   ->  -1 + j0 i2 = -1 

ZRDN    ->   0 + j1 i 

0, ENTER^, 3, W^Z   ->   0 -  j1 i3 = -i 
ZRDN    ->   0 + j1 i 

0, ENTER^, 4, W^Z   ->   1 + j0 i4 = 1 
ZRDN    ->   0 + j1 i 

0, ENTER^, 5, W^Z   ->   0 + j1 i5 = i 

 
 
Examples.- Calculate the value of:  z = 2^1/(1+i);  and z=(1+i)^1/2 
 

These two have a very similar key sequence, but they have different meaning: 

 
Solution:  1, ENTER^, ENTER^, 2, X^1/Z   -> 1,330 – J0,480 

Solution:  1, ENTER^, ENTER^, 2, Z^1/X -> 1,099 + j0,455 
 

 
 

 

NXTNRT Next value of Nth. Root Z=z0*e^j 2 /N z0 is the principal value 

 
In its general form, the solution to the Nth. Root in the complex plane admits multiple solutions. This is 

because of its logarithmic nature, since the logarithm is a multi-valued function (see discussion in next 
section). 

 
Z^1/N = e^[Ln(z)/N] = e^[Ln(|z|)+i(+2)]/N = e^[Ln(|z|)+i]/N * e^j 2/N 

 
 
From this we derive the general expression:        Next(z^1/N) = z^1/N * e^(j 2  /N) 

 
thus there are N different Nth. Roots,  all separated by (2 over N). See the geometric interpretation on 

section 7 ahead for further discussion on this. 

 
When executed in a program or RUN mode, data entry for this function expects N in the X register, and 

z in the Z complex stack level. However when the Complex Keyboard shortcut is used, the index N is 
prompted as part of the entry sequence – a much more convenient way. 

 
 

       Shortcut: Z, Z, SHIFT, SQRT 
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Example:- Calculate the two  square roots of 1. 

 
0, ENTER^, 1, ZENTER^, 2, Z^1/X  ->   1 + j 0 

2, NXTNRT ( plus ZRND)   ->  -1 + j 0 

 
Note that the previous root is temporarily stored in the LastZ register: 

LASTZ      ->   1 + j 0   (previous root) 
 

See section 9 for a general application program to calculate the n different Nth. Roots of a complex 

number 
 

 
Example.-  Calculate the three  cubic roots of  8. 

 
Using  “direct” data entering: [Im(z), ENTER^, Re(z)] 

 

0, ENTER^, 8, ZENTER^, 3, Z^1/X   ->    2 + j 0 
NXTNRT _ 3     ->   -1,000 + j 1,732 

NXTNRT_  3     ->   -1,000 – j 1,732 
 

Note: for this example use the Complex Keyboard  ZL to execute NXTNRT, as follows: 

 

Z, Z, SHIFT, SQRT, and then input 3 at the last prompt. 
 

 
Example: Calculate both quadratic roots of 1 + 2i. 

 

2, ENTER^, 1, ZSQRT    gives the first root:   z= 1,272 + j 0,786  
NXTNRT_  2   gives the second root:  z=-1,272 – j 0,786  

NXTNRT_  2   reverts to the first, principal value, of the root. 
 

This verifies that both roots are in fact on the same straight line, separated 180 degrees from each 

other and with the same module. 
 

 
Example: Calculate the three cubic roots of 1 + 2i. 

 
2, ENTER^, 1, ZENTER^ inputs z in the complex stack level Z 

3, 1/X, Z^X    gives the main root:     z= 1,220 + j 0,472  

NXTNRT_  3   gives the second root:   z=-1,018 + j 0,82  
NXTNRT_  3   give the third and last:  z=-0,201 – j 1,292  

 
 

In the next section we’ll discuss the logarithm in the complex plane, a very insightful and indeed 

interesting case study of the multi-valued functions.  
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5.3. Complex Logarithm. 
 

Table-x: Logarithm group. 
 

Index Function Formula Description 

1 ZLN Z=Ln|z|+i  Principal value of natural logarithm 

2 ZLOG Z=Ln(z)/Ln10 Principal value of decimal logarithm 

3 ZWLOG Z=Ln(z)/Ln(w) Base-w logarithm of z 

4 NXTLN Z=z+2  j Next value of natural logarithm 

 
The first thing to say is that a rigorous definition of the logarithm in the complex plane requires that its 

domain be restricted, for if we defined it valid in all the plane, such function wouldn’t be continuous, 
and thus neither holomorfic (or expressible as series of power functions). 

 
This can be seen intuitively if we consider that: 

 
Since:  z = |z|*e^i,  then:   

Ln z = Ln |z| + Ln (e^i) = Ln(|z|) + i 

 
But also 

 z = |z|*e^i (+2) = |z|*e^i ( +4)=…. = |z|*e^i ( +2 n)  
 
Then we’d equally have multiple values of its logarithm, as follows: 

Ln(z) = Ln(|z|) + i = Ln(|z|)+i (+2) = ….   Or generally: 

 
Ln z = Ln|z|+i (+2 n);   where n is a natural number. 

 
To deal with this multi-valued nature of the function, mathematicians define the different branches of 

the complex logarithm,  - log − as the single one and only logarithm which argument is comprised 

between ( -) and ( +), thus within the open interval ]  -, + [ 

 

 Its domain isn’t the whole complex plane, 

but it excludes a semi-straight line, centered 

at the origin, that forms an angle  with the 

real axis, as shown in the picture. Such set is 

called the “torn” or cut complex plane at 
angle ”.  Thus the principal value of the 

logarithm really should be called Log0, as it 

tears (or cuts)  the complex plane by the real 

negative semi-axis, or otherwise  =0. This 

means it is NOT defined  for any negative 
numbers, and when those need to be subject 

of its application, a different cut should be 
chosen. 

 

Therefore all arguments should be comprised 
between 180 and –180 degrees, as it would 

correspond to this definition of “Log0”. 
 

In practicality, the values calculated by ZLN 

always lie within this interval, since they use 
the internal routines of the calculator, 

[TOPOL] and [TOREC]. 
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The angle   should not be confused with the base of the logarithm, which is always the number e –

that is, there are natural logarithms. (See http://en.wikipedia.org/wiki/Branch_point for a more rigorous 

description of this subject). 

 
 

After this theoretical discussion, let’s see the functions from the 41Z module:- 
 

ZLN Natural logarithm Z=Ln|z|+i  Does LastZ 

 

Calculates the principal value of the natural logarithm, using the expression: 
 

Ln z = Ln|z| + i.,       where  = Arg(z)  belongs to ]-, ] 

 
Example: check that:  z=Ln(e^z), for z=(1+i) and z=(2+4i) 
 

1, ENTER^, ZEXP, ZLN  ->   1,000 + j 1,000 

4, ENTER^, 2, ZEXP, ZLN ->   2 – j 2,283 

 
How do you explain the last result? Is it correct? Try executing NXTLN (see below) on it… 
 

NXTLN    ->  2 + j 4,000     - that’s more like it! 

 
 

ZLOG Decimal logarithm Z=Ln(z)/Ln10 Does LastZ 

 
Calculates the principal value of the decimal logarithm using the expression: 

 
Log z = Ln z / Ln(10) 

 
Example: check that:  z=Log(10^z), for z=(1+i) and z=(2+4i) 
 

1, ENTER^, ZALOG, ZLOG  ->   1(1+j) 

4, ENTER^, 2, ZALOG, ZLOG  ->   2 + j 1,271 
 

How do you explain the last result? Is it correct? Have you found a bug on the 41Z? 

 
 

ZWLOG Base-W Logarithm Z=Ln(z)/Ln(w) Does LastZ 

 

General case of ZLOG, which has w=10.  This is a dual function,  

 
Log z = Ln z / Ln w 

 

 

NXTLN Next Natural logarithm Z=z0+2  j z0 is the principal value 

 
Calculates the next value of the natural logarithm, using the expression: 

 
Next(Ln z) = Ln(z) + 2 j 

 
So the different logarithms are “separated” a distance of value 2  in their imaginary parts. This works 

both “going up” as well as “going down”, thus each time NXTLN is executed two values are calculated 
and placed in complex levels Z and W. You can use Z<>W to see them both. 

 

http://en.wikipedia.org/wiki/Branch_point
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6. Complex Geometry. 
 
The next set of functions admits a geometrical interpretation for their results. Perhaps one of the 

earliest ways to approach the complex numbers was with the analogy where the real and imaginary 
parts are equivalent to the two coordinates in a geometric plane.  

 
Table-6.1: Complex geometric group. 
 

Index Function Formula Description 

1 ZMOD |z|=SQR(x^2+y^2) Module or magnitude of a complex number 

2 ZARG  =ATAN(y/x) Phase or angle of a complex number 

3a ZNEG Z=-z Opposite of a complex number 

3b ZCHSX Z=(-1)^x * z Opposite (by X) of a complex number 

4 ZCONJ Z=x-y j Conjugated of a complex number 

5 ZSIGN Z=z/|z| Sign of a complex number 

6 ZNORM Z=|z|^2 Norm of a complex number 

7 Z*I Z=z*i Rotates z 90 degrees counter clockwise 

8 Z/I Z=z/i Rotates z 90 degrees clockwise 

 
In fact, various complex operations admit a geometrical interpretation. An excellent reference source 
for this can be found at the following URL: http://www.clarku.edu/~djoyce/complex. 

 
Let’s see the functions in detail. 

 

ZMOD Module of z |z|=SQR(x^2+y^2) Does LastZ 

ZARG Argument of z =ATAN(y/x) Does LastZ 

 
This pair of functions calculates the module (or magnitude) and the argument (or angle) of a complex 

number, given by the well-known expressions: 

 
|z| = SQR( x2 + y2 ) 
  = ATAN( y/x) 

 
Since they use the internal [TOPOL] routine (like R-P does), the argument will always be given between 

180 and –180 degrees (or equivalent in the selected angular mode). 
 

The result is saved in the complex Z register, and the real X,Y stack levels – as a complex number with 

zero imaginary part. The original complex number is stored in the LastZ register. The other complex 
stack levels W, V, U aren’t disturbed. 

 
These functions display a meaningful description when used in run mode, as can be seen in the 

pictures below, for z= 5+4 j and RAD mode. 

 

                  
 
 

 
 

 

 
 

 
 

http://www.clarku.edu/~djoyce/complex.
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ZNORM Norm of z ||Z||=|z|^2 Does LastZ 

 

This function calculates the norm of a complex number, also known as the square of its module” 

 
||z|| = |z|2 ;  thus:  Znorm = x2 + y2 

 
When executed in run mode, the display shows a meaningful representation for it, like in the example 

below, also for z = 4 + 5 j : 
 

 
 

 

ZSIGN Module of z Z=z/|z| Does LastZ 

 

This function calculates the sign of a complex number. As an extension to the SIGN function for the 

real domain, it is a complex number with magnitude of one (i.e. located on the unit circle), that 

indicates the direction of the given original number. Thus obviously:  Zsign = z / |z| 

 

The figure above shows the unit circle and the relative position in the complex plane for the opposite (-
z), conjugate (zc), and opposite conjugate (-zc) of a given number z.  

Note that the inverse of z (1/z) will be located inside of the unit circle, and over the direction defined by 

the negative of its argument [-Arg(z)] 
 

Note that if z happens to be a cubic root of another number (i.e. z3), then the other two roots (z2 and 
z3) will have the same module and be located at 120 degrees from each other, on the red circle line. 

 
 
 

Z

-Z

Zsign

-Z Z

Z2

Z3

1/Z
1-1

-i

i

x=-Re(z) x=Re(z)

y=Im(z)

y=-Im(z)



−

Z

-Z

Zsign

-Z Z

Z2

Z3

1/Z
1-1

-i

i

x=-Re(z) x=Re(z)

y=Im(z)

y=-Im(z)



−



(c) Ángel M. Martin – May 2021 

 

41Z Deluxe User Manual Page 38 of  124 
 

 

ZNEG Opposite of z Z=-z Does LastZ 

ZCHSX Opposite of z by X Z=(-1)^x * z Does LastZ 

ZCONJ Conjugate of z Z=x-y j Does LastZ 

 
This pair of functions calculate the opposite- or the multiple-opposite by (-1)^x – and the conjugate of 

a complex number z=x+y i, as follows: 

 
-z = -x –y I,   and    z* = x – y I 

 
See the figure below for the geometric interpretation of ZNEG and multiplication by real numbers: 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

Z*I Multiply by i Z=z*i  Rotates z 90 deg ccw 

Z/I Divide by i Z=z/i  Rotates z 90 deg cw 

 

 
The main role of these two functions is as subroutines for the trigonometric set, and they are also 

provided for completion sake. Their geometric interpretation is a 90 degrees rotation of the complex 
number either clockwise or counter-clockwise respectively. 

 

These functions are used as subroutines for several others, like the direct and inverse trigonometric. 
The dependencies between hyperbolic and trigonometric ultimately involves multiplication by i, which is 

really a matter of swapping the real  and imaginary parts, with the appropriate sign change in each 
case. 
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6.2  Complex Comparisons. 

 
The 41Z module includes a comprehensive set of comparison checks, based on the complex numbers 
themselves and their modules (for relative position in the complex plane). Checks for purely real or 

imaginary cases are also provided. The main utilization for these functions is in program mode, as 
conditional decisions under program control based on the different values. 

 

 
Table 6.2. Complex comparisons function group. 
 

Index Function Formula Description 

1 Z=0? Is z=0? Checks if z is zero 

2 Z#0? Is z#0? Checks if z is not zero 

3 Z=I? Is z=i? Checks if z is the imaginary unit 

4 Z=W? Is z=w? Checks if z and w are the same 

5 Z=WR? Is z=w rounded? Checks if rounded z and rounded w are the same 

6 Z#W? Is z#w? Checks if z and w are different 

7 ZUNIT? Is |z|=1? Checks if z is on the unit circle 

8 ZIN? Is |z|<1? Checks whether z is inside the unit circle 

9 ZOUT? Is |z|>1? Checks whether z is outside the unit circle 

10 ZREAL? Is z a real number? Checks whether Im(z)=0 

11 ZIMAG? Is z true imaginary? Checks whether Re(z)=0 

12 ZINT? Is z true integer? Checks whether Im(z)=0 and FRC[Re(z)]=0 

13 ZGSS? Is z Gaussian? Checks whether Re(z) and Im(z) are both integers 

14 ZQUAD Shows Quad# msg. Sets corresponding User Flag, clears others. 

 
 

 
It’s well know that, contrary to real numbers, the complex plane isn’t an ordered domain. Thus we can’t 

establish ordered relationships between two complex numbers like they are done with real ones (like 

x>y, x<y?, etc.). 
 

There are however a few important cases that can also be used with complex numbers, as defined by 
the following functions.- As it is standard, they respond to the “do if true” logic, skipping the next 

program line when false. 

 
Z=W? Compares z with w Are they equal?  

Z#W? Compares z with w Are they different?  

Z=WR? Compares z with w rounded Are they equal?  

Z=0? Compares z with zero Are they equal?  

Z#0? Compares z with zero Are they different?  

Z=I? Compares z with i Are they equal?  

 
The first two functions compare the contents of the Z and W stack levels, checking for equal values of 

both the real and imaginary parts. 

 
z=w  iff  Re(z)=Re(w)  and  Im(z)=Im(w) 

 
The third function, Z=WR? Will establish the comparison on the rounded values of the four real 
numbers, according to the current display settings on the calculator (i.e. number of decimal places 
shown). This is useful when programming iterative calculations involving conditional decisions. 

 
Rnd(z) = Rnd(w) iff  abs[Re(z)]=abs[Re(w)]  and:  abs(Im(z)] = abs[Im(w)] 
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The remaining three functions on the table are particular applications of the general cases, checking 

whether the Z complex stack level contains zero or the imaginary unit: 

 
z=0 iff  Re(z)=0  and  Im(z)=0 
z=i  iff  Re(z)=0  and  Im(z)=1 

 
Some of the inverse comparisons can be made by using standard functions, as follows: 

 
- use X#0? To check for Z#0? Condition 

- Use X#0? To check for Z#I? Condition 
 

 

ZUNIT? Checks if z is on the unit circle |z|=1?  

ZIN? Checks if |z|<1 |z|<1? Sub-function 

ZOUT? Checks if |z|>1 |z|>1?  

 
These three functions base the comparison on the actual location of the complex number referred to 

the unit circle: inside of it, on it, or outside of it. The comparison is done using the number’s modulus, 

as a measure of the distance between the number and the origin. 

 
 
Example:  For z=4+5j , calculate its sign and verify that it’s located on the unit circle: 
 

5, ENTER^, 4, ZSIGN,  →  result: Zsign = 0,625 + j 0,781 

ZUNIT?   →  result: “YES”   

DEG, POLAR    →  result:  1,00 < 51,34  (in degrees) 

 
In program mode the behavior is ruled by the “do if true” rule, skipping the next line if false. 
 

 

 

ZQUAD Returns Quadrant# for z Sets flag 1-2-3-4 Shows message 

 
A new function to display the quadrant number (1 to 4) and set the user flag matching its value. 

 

       the message goes away in a few instants. 

Unit CircleUnit Circle
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ZREAL? Checks if z is purely real Im(z)=0?  

ZIMAG? Checks if z is purely imaginary Re(z)=0?  

ZINT? Checks if z is an integer  Im(z)=0, Re(z) integer  

ZGSS? Checks if z is Gaussian Both Re(z) and Im(z) integers  

 
The first two functions check whether the complex number is purely a real or imaginary number.  
 

Do not mistake these comparison functions with the other pair, {ZREAL and ZIMAG}, which cause the 

number to change to become either real or imaginary – nor with {ZREAL^ and ZIMAG^}, which are 
used to input complex numbers of the selected type based on the value stored in the real stack level X. 

 
 

The third one extends the scope of ZREAL?, adding the condition of being a true integer number: 
 

- ZINT? True means ZREAL? True, and FRC(Re(z))=0 

 
Do not mistake it with ZINT, which causes the complex number to have no decimal figures in BOTH its 

real and imaginary parts – therefore it’s result not a Real number! 
 

ZINT? Is used in the FOCAL programs to calculate Bessel Function, as a quick an effective way to 

determine if the order is integer – which triggers different expressions for the formulas. 
 

 
Like it occurs with any built-in comparison function, there’s no action taken on the original number, 

which will remain unchanged.  
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7.  Complex Trigonometry. 
 
Table 7.1. Complex trigonometry function group. 
 
Index Function Formula Description 

1 ZSIN sin z = -i *sinh (iz) Complex Sine 

2 ZCOS cos z = cosh (iz) Complex Cosine 

3 ZTAN tan z = - i * tanh (iz) Complex Tangent 

4 ZHSIN sinh z = 1/2 * [e^z – e^-z] Complex Hyperbolic Sine 

5 ZHCOS cosh z = 1/2 * [e^z + e^-z] Complex Hyperbolic Cosine 

6 ZHTAN tanh z = (e^z-e^-z)/(e^z+e^-z) Complex Hyperbolic Tangent 

 
And their inverses: 
7 ZASIN asin z = -i * asinh (iz) Complex Inverse Sine 

8 ZACOS acos z = /2 – asin z Complex inverse Cosine 

9 ZATAN atan z = -i * atanh (iz) Complex Inverse Tangent 

10 ZHASIN asinh z = Ln[z + SQ(z^2 + 1)] Complex Inverse Hyperbolic Sine 

11 ZHACOS acosh z = Ln[z + SQ(z^2 – 1)] Complex Inverse Hyperbolic Cosine 

12 ZHATAN atanh z = 1/2 * Ln[(1+z)/(1-z)] Complex Inverse Hyperbolic Tangent 

 
This section covers all the trigonometric and hyperbolic functions, providing the 41Z with a complete 

function set. In fact, their formulas would suggest that despite their distinct grouping, they are nothing 

more than particular examples of logarithm and exponential functions (kind of “logarithms in disguise”). 
 

Their usage is simple: the argument is taken from the complex-Z level and always  saved on the LastZ 
register. The result is placed on the complex-Z level. Levels W, V, U are preserved in all cases, 

including the more involved calculations with ZTAN and ZATAN (those with the devilish names), for 

which extensive use of scratch and temporary internal registers is made. 
 

The formulas used in the 41Z are: 

 
sin z = -i *sinh (iz)   sinh z = 1/2 * [ez – e-z] 
cos z = cosh (iz)   cosh z = 1/2 * [ez + e-z] 
tan z = - i * tanh (iz)   tanh z = (ez – e-z)/(ez + e-z) 
 
asin z = -i * asinh (iz)   asinh z = Ln[z + SQ(z2 + 1)] 
acos z =  /2 – asin z   acosh z = Ln[z + SQ(z2 – 1)] 

atan z = -i * atanh (iz)   atanh z = 1/2 * Ln[(1+z)/(1-z)] 
 
So we see that interestingly enough, the hyperbolic functions are used as the primary ones, also when 

the standard trigonometric functions are required. This could have also been done the other way 

around, with no particular reason why the actual implementation was chosen. 
 
 

Example. Because of their logarithmic nature, also the inverse trigonometric and hyperbolic functions 

will be multi-valued. Write a routine to calculate all the multiple values of ASIN z. 
 

 

01  LBL “ZASIN”   08  ZRCL 00  15  ZAVIEW 
02  ZASIN  09  ZNEG  16  PSE 
03  ZSTO 00  10  ZSTO 00  17  E  
04  ZAVIEW  11  RCL 02  18  ST+ 02  
05  E   12  PI   19  GTO 00 
06  STO 02  13  *   20  END 
07  LBL 00  14  +  
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The 41Z module includes functions to calculate next values for complex ASIN, ACOS and ATAN, as 

follows: NXTASN, NXTACS, and NXTATN. Using the first one the program above changes to this very 
simplified way: 

 

01  LBL “ZASIN2”   04  ZAVIEW  07  END  
02 ZASIN   05  NXTASN 

03 LBL 00   06  GTO 00   
 

 
The key map is shown in the figure on the right, and can be 
accessed using:  

 

• [ Z ], [SHIFT]  for the direct ones, and 

• [ Z ], [SHIFT], [SHIFT] for the inverses. 

                                                                   
 

 
 

Using the general expressions we can obtain the multiple values of a given function from its principal 

value “Z” of a given function, as follows: 

 
- the multiple values for ASIN(z)  -in green squares- are placed on the two straight lines parallel 

to the x axis, y=Im[ASIN(z)] and y=–Im[ASIN(z)], and are separated at intervals of 2 length 

on each line. 

Z

-z+

z+2 z+4

-z+3 -z+7-z+5

z-4 z-2

Z+2 j

Z-4 j

Z-2 j

-z-

ArcSin

-Z

Zsign

-Z Z-z+2 -z+4 -z+6

z-3 z- z+ z+3
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1/Z
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acos(k)=+/- acos +2k

atan(k) = atan +k
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- the multiple values for ACOS(z) –in yellow circles– are placed on the same two straight lines, 

and are separated at intervals of 2 length on each line. 
 

- the multiple values for ATAN(z) –in brown triangles- are placed on the upper of those straight 

lines, separated at intervals of  length on it. 
 

- the multiple values for Ln(z) –in blue squares- are placed on the vertical straight line 

x=Re[LN(z)], and separated at intervals of 2 length on it. 
 

- the three different values for z^1/3 are placed in the circle r=|z|^1/3, and are separated at 
120 degrees from each other (angular interval). 

 
 

 

NXTASN Next Complex ASIN  Does LastZ 

NXTACS Next Complex ACOS  Does LastZ 

NXTATN Next Complex ATAN  Does LastZ 

 
 

Let z0 be the principal value of the corresponding inverse trigonometric function. Each of these three 
functions returns two values, z1 and z1’ placed in complex stack levels Z and W. z1 will be shown if the 

function is executed in RUN mode. You can use Z<>W to see the value stored in W (that is, z1’) 
 

The NEXT values z and z1’ are and given by the following recursion formulas: 

 
 

Next ZASIN: 
 

Z1 = Z0 + 2 pi 

Z1’= -Z0 + pi 

 
Next ZACOS:  
 

Z1 = Z0+ 2 pi 

Z1’ = -Z0 + 2 pi 

 
Next ZATAN: 
 

Z1=Z0 +  pi 

Z1’= Z0 – pi 

 
 

 

The figure on the right plots the multi-valued 
imaginary part of the complex logarithm function, 

which shows the branches. As a complex number z 
goes around the origin, the imaginary part of the 

logarithm goes up or down: 
       

 

For further information on multi-valued complex functions see the following excellent reference: 
http://en.wikipedia.org/wiki/Branch_point 

 
 

Note: See section 9 ahead for further details on multi-valued functions, with the FOCAL driver program 

ZMTV (ZMulTiValue) that calculates all the consecutive results of the eight multi-value functions. 
 

http://en.wikipedia.org/wiki/Branch_point
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7.2  Complex Fibonacci Numbers.   {  ZFIB  } 

 
This short routine uses Binet’s formula applied to the complex domain to calculate the Fibonacci 
number of a given complex “index”. The result is another complex number that for integer cases 

coincides with the well-known Fibonacci series of course. 
 

Binet’s formula interpolation to noninteger real indexes (below left) provides an easy expression for the 

determination that guarantees real values also for the interpolated Fibonacci numbers 
 

                 
But it is in the complex domain (above right) when things become quite interesting, as can be seen in 
the graphical representations below, showing the locus of output results when the input values are 

negative real numbers (figure 1) and positive real value (figure 2). Note that both figures are not at the 
same scale/ (see also the animation at: https://www.geogebra.org/m/ypqcuqcs) 

 

Program listing: 
 

01  LBL "ZFIB" 

02   ZRPL^ 
03  1.618033989 
04   X^Z    
05   ZENTER^ 
06   0 
07   LASTX 
08   1/X 
09   CHS 
10   ZRUP 
11   W^Z 
12   5 
13   SQRT 
14   ST/  Z 
15   / 
16   ZAVIEW 
17   END 

 

 

 

Example: 
 

ZFIB (1.5) 
 

0, ENTER^, 1,5, Z$ “ZFIB” 

 

Result:  
 


 

  

https://www.geogebra.org/m/ypqcuqcs
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8.   2D-vectors or complex numbers? 

 
One of the common applications for complex numbers is their treatment as 2D vectors. This section 

covers the functions in 41Z that deal with vector operations between 2 complex numbers. 
 

Table 8.1. 2D vectors function group. 
 

Index Function Formula Description 

1 ZWANG Arg(ZW) = Arg(Z) – Arg(W) Angle between 2 vectors 

2 ZWDIST |W-Z| = SQR[(Wx-Zx)^2 – (Wy-Zy)^2] Distance between 2 points 

3 ZWDOT Z*W = Zx*Wx + Zy*Wy 2D vector Dot product 

4 ZWCROSS Z x W = |z| *|w| *Sin(Angle) 2D vector Cross product 

5 ZWDET |ZW| = Wx*Zy – Wy*Zx 2D determinant 

6 ZWLINE a=(Y1-Y2) / (X1-X2) 
b=Y2 – a*X2 

Equation of line through two 
points 

 
These functions use W and Z levels of the complex stack, leaving the result in level Z after performing 
complex stack drop. The original contents of Z is saved in the LastZ register. 

 
The following screen captures from V41 show the different displays for these functions: 

 
Let  z = 4 <45 degrees,  and  w= 3 <75 degrees . 
 

45, ENTER^, 4, ZREC  ->  2,828(1+j) 
ZREPL    [don’t forget or Z will be overwritten] 
75, ENTER^, 3, ZREC  ->  0,776 + 2,898J 

 
1.     ZWANG,-  angle defined between both vectors (in degrees in this case)   

2. ZRDN , LASTZ, ZWDIST – distance between both complex numbers 

 

  and    

The angle will be expressed in the selected angular unit. 

 
 

3. ZRDN , LASTZ, ZWDOT  - dot product of both vectors 
4.     ZRDN, LASTZ, ZWCROSS  - magnitude of the cross product of both vectors 

 

  and      

 
 
5.     ZRDN, LASTZ, ZWDET  - magnitude of the determinant of both vectors 
6.     ZRDN, LASTZ, ZWLINE  - equation of the straight line linking both points 

 

   and    
 

(*) Note that  despite having a simpler formula, ZWDET shows less precision than ZWCROSS. 
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Alternate Displaying: Quads and Tones. 

 
ZDISP Compacted LCD view Positive RE, IM D. Wilder 

ZQUAD Shows Quad message Sets User flag  

ZTONE Sounds Tone using Y,X Duration and frequency  

 
These three functions provide additional user feedback on the complex value in the stack level Z (i.e. 

stack registers Y,X). Use them as a complement to the main ZAVIEW, each has interesting aspects but 

cannot be a full replacement to ZAVIEW given their shortcomings. 
 

 
ZDISP main value is that it only uses the LCD to display a compacted version of the complex number. 

This leaves the ALPHA register undisturbed, in cases it needs to maintain its contents through a 

visualization of the Z result. 
 

  or:    
 

• Each Real and Imaginary parts are allowed six LCD characters, 

• Each is split as follows: three for the mantissa, one for the exponent sign and two more for the 

exponent itself.  

• The two strings of six characters are separated by a comma to thell them apart 

• No scrolling is supported, as all values are represented using the equivalent to a SCI 02 format. 

 
Needless to say its main shortcoming is that it does not support negative values in the real or imaginary 

parts. This can be partially palliated using ZQUAD prior to ZDISP, as this will set the corresponding 
user flag depending on the complex location, leaving the other three flags from F1-F4 cleared: 

 

- F1 set if bth Re(z)>0 and Im(z)>0 
- F2 set if Re(z)<0 and Im(z)>0 
- F3 set if both Re(z) and Im(z)<0 
- F4 set if Re(z)?0 and Im(z)<0 

 
ZQUAD  will briefly show an informative message with the quadrant number, then it’ll revert to the 
standard ZAVIEW output to end.  It’ll also reset the user flags 1-2-3-4 corresponding to the quadrant. 
 

 

  

  

 

 

ZTONE will sound an acoustic tone using the information in the Y,X registers for frequency and 
duration; thus at least in theory each complex value is associated to its unique sound.  In practice 

however the typical values make all sounds rather alike so it is more of a curiosity than of practical 
value.  - for instance all real values (Im(z)=0) will have the same “blank” tone. 
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9.  Polynomial Roots and Evaluation 
 

A classic in calculator history just got improved. The 41Z Deluxe adds to the set new fast MCODE 
functions for the evalution of polynomials with complex coefficients, as well as their primitive and their 

first and second derivatives. 

 
Table 9.1. Polynomial Evaluations group. 

 

ZPL Polynomial Evaluation Control word in X Does LastZ 

ZPLI Primitive of Polynomial Control word in X Does LastZ 

ZPD1 Pol. First derivative Control word in X Does LastZ 

ZPD2 Pol. Second Derivative Control word in X Does LastZ 

ZINPT Data Input Routine Control word in X FOCAL Routine 

ZOUPT Data Output Routine Control word in X FOCAL Routine 

 
Besides the evaluation point z0, the evaluation functions require a control word as input parameter. 

This control word defines the complex register range used to store the polynomial coefficients, in the 

usual form “bbb.eee”, with the highest term coeff. stored in ZRbbb.  If the dregree of the polynomial is 
“n”  there should be n+1 complex registers  in the range, i.e. (eee-bbb) = n  

 
Like the other hybrid functions in the module,  you need to enter the complex value first (z0) and then 

the real value (control word) in the X-register – which will push z0 one level up in the REAL stack. The 

result will be retuned in the complex-Z register, with z0 saved in LastZ  - but the control word is lost 
(i.e. not saved in LastX). 

 
The utility routines ZINPT and ZOUPT come very handy to enter the polynomial coefficients in the 

complex registers. They too use the same control word  bbb.eee to define the complex register range 
used for the input/output action. Let’s see one example next. 

 

Example: Evaluate the polynomial, main primitive and derivatives in the point z0=1+i for the 4th.-
degree polynomial:   P(z) = (1+i) z^4 – (2-3i) z^3 + (-1+2i) z^2 + z – (1+i) 

 
First we introduced the coefficients in the complex data registers ZR00 to ZR04 as follows. Note that 

the index in the prompts refers to the complex register to use, and not to the polynomial term: 

 
0.004, ZF$ “ZINPT”,  ”Z0=?” 

1, ENTER^, R/S   “Z1=?” 
3, ENTER^, 2, CHS, R/S  “Z2=?” 

2, ENTER^, 1, CHS, R/S  ”Z3=?“ 
0, ENTER^, 1, R/S  “Z4=?” 

1, ENTER^, ZNEG, R/S  shows Z-level again 

 
 

With the data safely stored in {ZR00 – ZR04} we proceed to calculate the results. First we enter the 
evaluation point in the complex Z register, followed by the control word in X: 

 

1, ENTER^, ENTER^, 0.004,      XEQ “ZPL” =>    -10-J16 
LASTZ,  0.004,   ZF$ “ZPD1”  =>    -39-J10 

LASTZ,  0.004,   ZF$ “ZPD2”  =>    -56+J34 
LASTZ,  0.004   ZF$ “ZPLI“  =>     1.333-J7.600 

 

 
Note how the result for the polynomial and derivatives have integer real and imaginary parts (i.e. are 

Gaussian numbers) – but the primitive is not. We’ll revisit these results when we cover the Complex 
Derivative Engine in the next chapters. 
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Preview:  Polynomial Roots and Values Launchers - both together now. 
 

A convenient grouping of the polynomial functions provides access to the individual choices from a 
common prompt. To access it you can use  its dedicated launcher from the complex keyboard shortcut  

- just press:  
  

  [ Z ], [A], [L], [SHIFT]   
 

 

Options “I” / “O” will trigger ZINPUT and ZOUPT respectively.  Note that there are other functions 
also included here (“F” and “D”), which are related to the first derivative and continued fractions. They 

will be covered in another chapter later in the manual. 
 

 

Note also that pressing [SHIFT] again this launcher toggles with the corresponding for the Complex 
Roots, as shown below: 

 
 

 
 ----→ 

 

 

A convenient grouping of the root-finding applications provides access to the root finders for the first, 
second, third and n-th. degree polynomials, as well as the general-purpose ZSOLVE. To access it you 

can call the sub-function ZPRT, or using the complex keyboard shortcut just press:  
 

 

  [ Z ], [A], [L] 
 

 
The first-degree option is for function ZWLINE - not strictly a root finder but being such a simple case 

it’s convenient to have it also in the group. 
 

For ZQRT and ZCRT the coefficients are expected to be in the complex stack prior to the execution – 

whilst ZPROOT and ZSOLVE will prompt for the required entries. 
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Solution of Quadratic and Cubic equations. 
 

ZQRT Roots of 2nd. Degree Eq. Coeffs. in Z-Stack All MCODE 

ZCRT Roots of 3rd. Degree Eq. Coeffs. In Z-Stack FOCAL program 

ZQUDR Driver for ZCRT Prompts for values FOCAL Routine 

 

ZQRT Solves the roots of a quadratic equation with complex coefficients, as follows: 

 
C 1 * z2 + C2 * z + C3 = 0;  where C1, C2, C3, and z are complex numbers 

 
By applying the general formula:    z1,2 = [ -C2 +/- SQR(C2

2 – 4C1*C3)] /2*C1 

 
 

Example 1.- find out the roots of  (1+i)*z2 + (-1-i)*z + (1-i) = 0 

  
1, ENTER^, ZENTER^     

1, CHS, ENTER^, ZENTER^   
1, CHS, ENTER^, 1, XEQ “ZQRT”    

“RUNNING...”       followed by:  “  1,300+j0,625“ 

Z<>W    “ -0,300-j0,625” 
 

We see that contrary to the real coefficients case, here the roots are NOT conjugated of one another. 
 

ZQRT is entirely written in MCODE. It  expects the three complex coefficients stored in levels V, W, 

and Z of the complex stack. The driver program below is an example using FOCAL instructions instead. 
Note also that no memory registers are used, and all calculations are performed using exclusively the 

complex stack. The core of the program is from lines 16 to 37, or just 21 programming steps to resolve 
both roots. 

 

1    LBL "ZQDR" 

2   "aZ^2+bZ+c=0" 

3   AVIEW 

4   PSE 

5   "IM^RE a=?" 

6   PROMPT 

7   ZENTER^ 

8   "IM^RE b=?" 

9   PROMPT 

10   ZENTER^ 

11   "IM^RE c=?" 

12   PROMPT 

13   "RUNNING…" 

14   AVIEW 

15    LBL "ZQRT" 

16   ZENTER^ 

17   ZR^ 

18   Z/ 

19   LASTZ 

20   ZR^ 

21   Z<>W 

22   Z/ 

23   ZHALF 

24   ZNEG 

25   ZENTER^ 

26   ZENTER^ 

27   Z^2 

28   ZR^ 

29   Z- 

30   ZSQRT 

31   ZENTER^ 

32   ZNEG 

33   ZR^ 

34   Z+ 

35   ZRDN 

36   Z+ 

37   ZRUP 

38   SF 21 

39   ZAVIEW 

40   Z<>W 

41   CF 21 

42   ZAVIEW 

43   END 

 

 

Solving the Cubic Equation. 
 
Example 2. Obtain the three roots of (1+2i) z^3 – (2-i) z – 3i = 0 

 
We type: 2, ENTER^, 1, [ Z ], 0, ZENTER^, 1, ENTER, 2, CHS, [ Z ] , [ , ], 3, ZNEG 
to obtain the three solutions in the complex stack, as follows:  

 
XEQ “ZCRT” → z1 = -0,117-J0,910   

ZRDN   → z2 = -0,922+J1,047  

ZRDN  → z3 =  1,039-J0,136  
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Two ways to skin the third-degree Equation Cat. 
 
The programs below show two alternative solutions for the third degree equation roots. Note the 

existing symmetry between them, in fact identical until step 31. The version on the left is the 
implemented in the 41Z module. Both use a variation of the Cardano-Vieta formulas involving some 

trigonometry tricks that notably reduce the number of steps. 
 

1 LBL "ZCRT"  Main version  LBL "ZCRT2"  
Alterntaive 
Version  

2 ZRUP a3  ZRUP a3  

3 Z/ a0/a3  Z/ a0/a3  

4 ZSTO (00) a0'  ZSTO (00) a0'  

5 Z<>W a1  Z<>W a1  

6 LASTZ a3  LASTZ a3  

7 Z/ a1/a3  Z/ a1/a3  

8 ZSTO 01 a1'  ZSTO 01 a1'  

9 ZRUP a'2  ZRUP a'2  

10 LASTZ a3  LASTZ a3  

11 Z/ a2/a3  Z/ a2/a3  

16 3    3    

17 ST/  Z    ST/  Z    

18  /     /    

19 ZSTO 02 a2' / 3  ZSTO 02 a2' / 3  

12 Z^2 a2^2 / 9  Z^2 a2^2 / 9  

13 3    3    

14 ST*  Z    ST*  Z    

15 * a2^2 / 3  * a2^2 / 3  

20 Z- a1-a2^2 / 3  Z- a1-a2^2 / 3  

21 ZRCL 02 a2 /3  ZRCL 02 a2 /3  

22 Z^3 a2^3 / 27  Z^3 a2^3 / 27  

23 ZDBL 2 a2^3 /27  ZDBL 2 a2^3 /27  

24 ZRCL 01 a1  ZRCL 01 a1  

25 ZRCL 02 a2/3  ZRCL 02 a2/3  

26 Z* a1*a2 /3  Z* a1*a2 /3  

27 Z- (a2^3 / 27)- (a1*a2/3) Z- (a2^3 / 27)- (a1*a2/3) 
28 ZRCL (00) a0  ZRCL (00) a0  

29 Z+ q = a0 + (a2^3 / 27)- (a1*a2/3) Z+ q = a0 + (a2^3 / 27)- (a1*a2/3) 
30 ZHALF q/2  ZHALF q/2  

31 Z<>W p  Z<>W p  

32 3    -3    

33 ST/  Z    ST/  Z    

34  / p/3   / -p/3  

35 Z/ 3q/2p   Z/ -3q/2p   

36 LASTZ p/3  LASTZ -p/3  

37 ZSQRT sqr(p/3)  ZSQRT sqr(-p/3)  

38 ZSTO (00)    ZSTO (00)    

39 Z/ 3q/2p / sqr(p/3)  Z/ -3q/2p / sqr(-p/3)  

40 ZHASIN    ZASIN    

41 3    3    

42 ST/  Z    ST/  Z    

43  / 1/3 asin[ ]   /    

44 ZRPL^  Fill complex stack  ZRPL^  Fill complex stack  
45 ,002    ,002    

46 STO 02    STO 02    

47 RDN    RDN    

48 LBL 02  Data output loop  LBL 02  Data output loop  
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49 RCL 02    RCL 02    

50 INT    INT    

51 120 2k/3  120 2k/3  

52 D-R    D-R    

53 *    *    

54 ST+ Z add to imaginary part  + add to real part  

55 RDN tidy up stack  ZSIN    

56 ZHSIN    ZRCL (00)    

57 ZRCL (00)    Z*    

58 Z*    ZDBL    

59 ZDBL    ZRCL 02 a2/3  

60 ZNEG    Z-    

61 ZRCL 02 a2/3  ZAVIEW    

62 Z-    ZRUP save in Z-stack  

63 ZAVIEW  Show progress…  ISG 02  Increase counter  

64 ZRUP save in Z-stack  GTO 02  Go for next  

65 ISG 02  Increase counter  END  done  

66 GTO 02  Go for next     

67 END  done     

 
 

As you can see the density of 41Z functions is remarkable. The 41Z complex function set and complex 

stack enables the programmer to treat complex calculations as though they used real numbers, not 
worrying about the real or imaginary parts but working on the complex number as single entity. In fact, 

exercising some care (notably to ensure complex stack lift), you could almost translate many FOCAL 
programs by replacing the standard functions one-to-one with the equivalent complex ones. That’s why 

it’s important that the function set be as complete as possible, and that the complex stack 
implementation follows the same RPN conventions. 
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Roots of Complex Polynomials.  {  ZPROOT  ,  ZPLRT  } 
 

ZPROOT Roots of Polynomials Data entry/output Valentín Albillo 

ZPLRT Polynomial Roots Uses Newton method Martin - Baillard 

 
These programs calculate all the roots of a polynomial of degree n, and with complex coefficients. It is 

therefore the most general case of polynomial root finders that can possibly be used, as it also will 
work when the coefficients are real.  

 

• The first one is a wonderful example of FOCAL capabilities, and very well showcases the 

versatility of the HP-41C (even without the 41Z module). It was first published on PPC 
Technical Notes, PPCTN – the journal of the Australian chapter of the PPC. The program 

includes data entry and output, simply answer the prompts as they’re presented. See the 
program listing in the appendix below. 

• The second is a direct implementation of the Newton method combined with a deflation 

technique for each root found using the iterative process. It is based on JM Baillard’s example 

for real roots (see paragraph #1.f at: http://hp41programs.yolasite.com/polynomials.php), 
simply replacing the standard HP-41 functions with 41Z equivalents – to make it valid in the 

complex domain. This method takes advantage of the polynomial evaluation and first derivative 
MCODE functions (ZPL and ZPLD1) , which should reduce considerably the execution time 

provided that a good initial guess is provided.  

The routine assumes the polynomial coefficients are stored in Complex Data registers ZR(bbb) to 

ZR(eee) - the initial guess is the {Z,Y} stack registers, and the polynomial control word “bbb.eee” in the 

X-register (using Complex Data register indexes). You can automate the data entry process using sub-
function ZINPT, make sure that the first complex register used is no lower than ZR03 (i.e. real registers 

{R06 and R07}) 

 

 01  LBL "ZPRT  bbb,eee 
 02  STO 02     
 03  STO 03      reg range 
 04  STO 04     
 05  RDN     
 06  ZSTO (00)     
 07  ISG 04     
 08  LBL 01     
 09  ZRCL (00)     
 10  ZAVIEW     
 11  RCL 03     reg range 
 12  ZPL     
 13  LASTZ     
 14  RCL 03     reg range 
 15  ZPLD1     (ZF# 47) 

 16  Z/     
 17  ZST- (00)     
 18  ZRCL (00)     
 19  Z=0?     
 20  SIGN     
 21  Z/     
 22  ZMOD     
 23  E-8           tolerance 
 24  X<Y?     
 25  GTO 01     
 26  E-3           0,001 
 27  ST- 03      deflate pol 
 28  RCL 03     reduced deg 
 29  STO 05     used as index 
 30  CLZ     

 31  LBL 02     
 32  ZRC* (00)     
 33  ZST+ IND 05     
 34  ZRCL IND 05     
 35  ISG 05     
 36  GTO 02     
 37  ZRCL (00)     
 38  ZSTO IND 05     
 39  ISG 04     
 40  GTO 01     
 41  RCL 02     
 42  E     
 43  +        bbb+1,eee 
 44  END 

 
 

Registers used by ZPLRT.  
 
The program uses ZR00 (i.e. {R00-R01}) to hold the current complex guess, and registers R02-R05 for 
scratch. Therefore the polynomial coefficients cannot be stored in complex registers below ZR03 (i.e. 

{R06-R07}). 
 

This method convergence is quite fast, which also contributes to the general good performance. This 

however is conditioned to a good initial guess as entered by the user. 
 
 

http://hp41programs.yolasite.com/polynomials.php
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Example 1.-  Calculate the roots of P(x) = 2.x^5 + 3.x^4 – 35.x^3 – 10.x^2 + 128.x -74 

 
Using ZINPT we introduce the six coefficients in registers {ZR03 – ZR08}, then enter the guess 

z0=(1+0i) and the control word for the polynomial, then execute the routine. The successive values are 

shown, and upon completion the control word of the roots is left in X – so you can use ZOUPT to 
review. The roots are all real, with values:  

ZRCL 03  ->  -4.373739462  
ZRCL 04  ->  -2.455070118  
ZRCL 05  ->   2.984066207  
ZRCL 06  ->   1.641131729  
ZRCL 07  ->   0.703611645  

 
 
Example 2.-  Calculate the three roots of:  x3 + x2 + x + 1  
 

XEQ “ZPROOT”   ->  “DEGREE=?” 
3, R/S    ->  “IM^RE (3)=?“ 
0, ENTER^, 1, R/S   ->  “IM^RE (2)=?“ 
0, ENTER^, 1, R/S   ->  “IM^RE (1)=?“ 
0, ENTER^, 1, R/S   ->  “IM^RE (0)=?“ 
0, ENTER^, 1, R/S   ->  “SOLVING...”  

     ->  “FOUND ROOT#3”, and  “SOLVING…” 
     ->  “FOUND ROOT#2”, and   “SOLVING…” 
     ->  “FOUND ROOT#1” 

➔  -5,850E-14-j1    (that is, -i) 
➔   5,850E-14+j1   (that is, i) 
➔  -1+j1,170E-13   (that is, -1) 

 
 
Example 3.-   Calculate the four roots of: (1+2i)*z4 + (-1-2i)*z3 + (3-3i)*z2 + z – 1  

  
XEQ “ZPROOT”   ->  “DEGREE=?” 
4, R/S    ->  “IM^RE (4)=?“ 
2, ENTER^, 1, R/S   ->  “IM^RE (3)=?“ 
2, CHS, ENTER^, 1, CHS, R/S ->  “IM^RE (2)=?“ 
3, CHS, ENTER^, CHS, R/S   ->  “IM^RE (1)=?“ 
0, ENTER^, 1, R/S   ->  “IM^RE (0)=?“ 
0, ENTER^, 1, CHS, R/S  ->  “SOLVING…”  

     ->  “FOUND ROOT#4”, and  “SOLVING…” 
     ->  “FOUND ROOT#3”, and  “SOLVING…” 
     ->  “FOUND ROOT#2”, and   “SOLVING…” 

->  “FOUND ROOT#1” 
  1,698+J0,802     R/S 

➔  -0,400-J0,859      R/S 
➔   0,358+J0,130     R/S 
➔  -0,656-J0,073 

 
The four solutions are:   z1 =  1,698 + 0,802 j   or:  1,878 <) 25,27 
    z2 = -0,400 -  0,859 j   or:  0,948 <)-114,976 

   z3=   0,358 + 0,130 j   or:  0,381 <) 9,941 
   z4 = -0,,656 - 0,073 j   or:  0,660 <)-173,676 

 

 
 

(*) You can also use the Z-pad to input real coefficients, i.e. [ Z ], 1 instead of 0, ENTER^, 1. 
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Appendix.- Program Listing for ZPROOT 
 

 

 

1 LBL "ZPROOT" 44 CF 00 87 E-3 130 GTO 02

2 SIZE? 45 CHS 88 ST+ 01 131 RCL 08

3 "DEGREE=?" 46 STO 04 89 RCL 03 132 ST* Z

4 PROMPT 47 FIX 2 90 STO IND 05 133 *

5 STO Z 48 RND 91 RCL 04 134 DSE 08

6 ST+X 2N 49 FIX 6 92 STO IND 06 135 GTO 02

7 11 50 X#0? 93 DSE 00 136 RTN

8 + 2N+11 51 GTO 01 94 GTO 06 137 LBL 00

9 X>Y? 52 SIGN 95 TONE 5 138 ZENTER^

10 PSIZE 53 STO 04 96 RCL 01 139 RCL 04

11 RCL Z 54 LBL 01 97 INT 140 RCL 03

12 STO 00 N 55 RCL 00 98 E1 141 Z*

13 STO 03 N 56 STO 08 99 - 142 RCL IND 05

14 9,008 57 SF 01 100 E3 143 FS? 01

15 + 58 XEQ 11 101 / 144 RCL 08

16 STO 01 N+9,008 59 R-P 102 ST- 05 145 FS? 01

17 STO 05 N+9,008 60 1/X 103 FIX 3 146 *

18 X<>Y 2N+11 61 STO 07 104 SF 21 147 +

19 E 62 X<>Y 105 LBL 10 148 FS? 00

20 - 2N+10 63 CHS 106 ISG 00 149 STO IND 05

21 STO 02 2N+10 64 STO 08 107 NOP 150 X<>Y

22 STO 06 65 CF 01 108 RCL IND 06 151 RCL IND 06

23 FIX 0 66 XEQ 11 109 RCL IND 05 152 FS? 01

24 CF 29 67 ZENTER^ 110 ZAVIEW 153 RCL 08

25 LBL 05 68 RCL 08 111 DSE 06 154 FS? 01

26 "IM^RE(" N 69 RCL 07 112 DSE 05 155 *

27 ARCL 03 70 P-R 113 GTO 10 156 +

28 "|-)=?" 71 Z* 114 CF 21 157 FS? 00

29 PROMPT 72 ST- 03 115 SF 29 158 STO IND 06

30 STO IND 05 73 X<>Y 116 RTN 159 X<>Y

31 X<>Y 74 ST- 04 117 LBL 11 160 FS? 01

32 STO IND 06 N-1 75 ZRND 118 RCL 01 161 DSE 08

33 DSE 03 76 Z#0? 119 STO 05 162 LBL 02

34 X<>Y 77 GTO 01 120 RCL 02 163 DSE 06

35 DSE 06 78 FIX 0 121 STO 06 164 DSE 05

36 DSE 05 79 "FOUND ROOT#" 122 FC? 01 165 GTO 00

37 GTO 05 80 ARCL 00 123 GTO 13 166 END

38 RCL 03 81 AVIEW 124 E-3

39 LBL 06 82 SF 00 125 ST+ 05

40 "SOLVING..." 83 XEQ 11 126 LBL 13

41 AVIEW 84 E 127 RCL IND 06

42 SF 25 85 ST+ 05 128 RCL IND 05

43 SF 99 86 ST+ 06 129 FC? 01
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10.  It’s a Gamma-Zeta world out there. 
 
This section describes the different functions and programs included on the 41Z that deal with the 

calculation of the Gamma and Zeta functions in the complex plane.  A group of six functions in total, 
three completely written in machine code and three as FOCAL programs, with a couple of example 

applications to complement it. 
 
Table 10.1. Gamma function group. 
 

ZGAMMA Complex Gamma function for z#-k, k=integer Does LastZ 

ZLNG Gamma Logarithm see below Does LastZ 

ZPSI Complex Digamma (Psi) see below Does LastZ 

ZIGAM Inverse of Gamma Iterative method FOCAL program 

ZPSIN Complex Poly-Gamma See below FOCAL program 

ZZETA Complex Riemann Zeta For z#1 FOCAL program 

 
ZGAMMA uses the Lanczos approximation to compute the value of Gamma. An excellent reference 
source is found under http://www.rskey.org/gamma.htm, written by Viktor T. Toth.  To remark that 

ZGAMMA is implemented completely in machine code, even for Re(z)<0 using the reflection formula 

for analytical continuation. 
 

For complex numbers on the positive semi-plane [Re(z)>0], the formula used is as follows 
 

 

 
 

 
 

 

 
 

 

 
 
And the following identity (reflection formula) is used for numbers in the negative semi-plane:  

[Re(z)<0]: which can be re-written as:    (z) * (-z) = - / [z*Sin( z)] 

   
For cases when the real part of the argument is negative [Re(z)<0], ZGAMMA uses the analytical 

continuation to compute the reflection formula – all internal in the MCODE and transparent to the user. 
 
 

Example 1.-  Calculate (1+i) 

 
1, ENTER^, ZGAMMA   -> “RUNNING…”, followed by ->   0,498-j0,155 

 
 

Example 2.-  Verify that  (1/2) = SQR() 

 

0, ENTER^, 0.5, ZGAMMA  ->  1,772 + j0 
PI, SQRT, ZREAL^, Z-   -> -2,00E-9 + j0 

 
 

Example 3.-  Calculate (-1.5+i) 

 
1, ENTER^, 1.5, CHS, ZGAMMA -> 0,191 + j0,174 

q 0  = 
  

75122.6331530 
  

q 1  = 
  

80916.6278952 
  

q 2  = 
  

36308.2951477 
  

q 3  = 
  

8687.24529705 
  

q 4  = 
  

1168.92649479 
  

q 5  = 
  

83.8676043424 
  

q 6  = 
  

2.5066282 
  

  

http://www.rskey.org/gamma.htm
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The graphic below (also from the same web site) shows Gamma for real arguments. Notice the poles at 

x=0 and negative integers. Also below the Stirling’s approximation for Gamma: 

 
 

The following graphic showing the module of the Complex Gamma function is taken from 

http://en.wikipedia.org/wiki/Gamma_function.- Note the poles at the negative integers and zero. 
 

 
 
Example:  Use ZLNG to calculate (1+i) and compare it with the value obtained by ZGAMMA 

 
1, ENTER^, ZGAMMA, LASTZ, ZLNG, ZEXP, Z-  -> 2,400E-9+j3,000E-10

http://en.wikipedia.org/wiki/Gamma_function
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Digamma and LogGamma Functions {   ZPSI  ,  ZLNG  } 

 
Both the Digamma and LogGamma are implemented entirely in MCODE – fast execution and full LastZ 

support of the original argument. No data registers are used, no additional complex stack levels. 

 
The formula used is the approximation for Digamma when x>8: 

 

          
 

programmed as:  u^2{[(u^2/20-1/21)u^2 + 1/10]u^2 –1}/12 – [Ln u + u/2],  
 
where u=1/x;  and using the following precision correction factor when x<8 

 

Equivalent Program listings.-  The two FOCAL programs listed below calculate the Digamma and the 

Gamma functions for complex arguments. The first one is an example using the asymptotic 

approximation as described below, whilst the second one is an extension of the MCODE function 
ZGAMMA, using the reflection formula for arguments with Re(z)<1 (programmed in turn as another 

MCODE function, ZGNZG). 
 

01 LBL "ZPSI" 26 Z/ 01 LBL "ZG"

02 ZREPL^ 27 21 02 ZENTER^ 

03 7 E-3 28 1/X 03 X<>Y

04 STO O 29 ZREAL^ 04 X#0?

05 CLZ 30 Z- 05 GTO 00

06 LBL 00 31 Z* 06 X<>Y

07 Z<>W 32 0.1 07 X>0?

08 RCL O 33 + 08 GTO 00

09 INT 34 Z* 09 INT

10 + 35 E 10 LASTX

11 ZINV 36 - 11 X#Y?

12 Z+ 37 Z* 12 GTO 00

13 ISG O 38 12 13 0

14 GTO 00 39 ZREAL^ 14 1/X

15 ZSTO 40 Z/ 15 LBL 00

16 E 41 ZRCL (00) 16 ZRDN

17 Z<>W 42 ZLN 17 CF 00

18 8 43 LASTZ 18 X<0?

19 + 44 ZHALF 19 SF 00

20 ZINV 45 Z+ 20 FS? 00

21 ZSTO (00) 46 Z- 21 ZNEG

22 Z^2 47 ZRCL 22 FS? 00

23 ZREPL 48 E 23 INCX

24 20 49 Z- 24 ZGAMMA

25 ZREAL^ 50 ZAVIEW 25 FC? 00

51 END 26 GTO 01

27 LASTZ

for x>8 28 ZGNZG

Ps i (x) = ln x - 1/(2x) -1/(12x2) + 1/(120x4) - 1/(252x6) + 1/(240x8)  29 Z<>W

together with the relationship:  Ps i (x+1) = Ps i (x) + 1/x 30 Z/

31 LBL 01

32 ZAVIEW

33 END  
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The following two programs calculate the Logarithm of the Gamma function for complex arguments. 

The first one uses the Stirling approximation, with a correction factor to increase the precision of the 
calculation. This takes advantage of the ZGPRD function, also used in the Lanczos approximation. 

 

          
 

correction factor:   Ln(z) = Ln(z+7) – Ln[PROD(z+k)|k=1,2..6] 
 
The second one applies the direct definition by calculating the summation until there’s no additional 

contribution to the partial result when adding more terms.  In addition to being much slower than the 
Stirling method, this is also dependent of the display precision settings and thus not the recommended 

approach. It is not included on the 41Z but nevertheless is an interesting example of the utilization of 
some of its functions, like Z=WR? and the memory storage registers, ZSTO and ZRCL.  

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

                                                     
The table above shows the 
correspondence between the complex 

register number (ZRnn) and the 
required SIZE in the calculator. Note 

that a minimum of SIZE 002 is 

required for ZR00 to exist. 
 

 

01 LBL "ZLNG" 01 LBL "ZLNG2"

02 7 02 1

03 + (z+7) 03 STO 02

04 ZST0 (00) 04 RDN

05 Text-0 NOP 05 ZSTO (00)

06 6 06 XEQ 05

07 Z^X 07 LBL 00

08 810 08 ZENTER^

09 ST* Z 09 XEQ 05

10 * 10 Z+

11 ZINV 11 Z=WR?

12 ZRCL (00) 12 GTO 02

13 ZINV 13 GTO 00

14 ZSINH 14 LBL 02

15 ZRCL (00) 15 ZRCL (00)

16 Z* 16 ZLN

17 Z+ 17 Z-

18 ZLN 18 ZRCL (00)

19 ZRCL (00) 19 0,5772156649

20 ZLN 20 ST* Z

21 ZDBL 21 *

22 Z+ 22 Z-

23 2 23 ZAVIEW

24 - 24 RTN

25 ZRCL (00) 25 LBL 05

26 Z* 26 ZRCL (00)

27 ZRCL (00) 27 RCL 02

28 ZLN 28 ST/ Z

29 Z- 29  /

30 PI 30 ZENTER^

31 ST+ X 31 1

32 LN 32 +

33 + 33 ZLN

34 ZHALF 34 Z-

35 ZRCL (00) 35 1

36 Text-0 NOP 36 ST+ 02

37 7 37 RDN

38 - z 38 END

39 ZGPRD

40 ZLN

41 Z-

42 ZAVIEW

43 END
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Poly-Gamma Function {   ZPSIN   } 

 
To complete the set of Gamma-related functions, here’s a 41Z version of JM Baillard’s program to 
calculate PSIN for a generic integer degree n.  The program listing is given below, notice the usage of 

the STO math functions as well as other 41Z fixtures (like the complex stack and data register  

management) showcasing the applicability of the function set. 
 

1 LBL "ZPSIN 
02 STO 09 
03 RDN 
04 ZSTO 01 
05 CLX 
06 STO 04 
07 STO 05 
08 LBL 01 
09 ZRCL 01 
10 ZSTO 00 
11 RCL 09 
12 8 
13 + 
14 X<Y? 
15 GTO 00 
16 CLX 
17 E 
18 RCL 09 
19 + 
20 CHS 
21 Z^X 
22 ZST+ 02 
23 E 
24 ST+ 02 
25 GTO 01 
26 LBL 00 
27 ZRCL 00 
28 ZSTO 03 
29 ZRCL 01 
30 Z^2 
31 ZINV 
32 ZSTO 00 
33 ZSTO 01 
34 RCL 09 
35 9 
36 + 
37 FACT 
38 39.6 
39  / 
40 0 
41 X<>Y 

42 ZST* 00 
43 XEQ 05 
44 RCL 09 
45 7 
46 + 
47 FACT 
48 ST- 00 
49 XEQ 05 
50 0 
51 40 
52 ZST/ 00 
53 RCL 09 
54 5 
55 + 
56 FACT 
57 ST+ 00 
58 XEQ 05 
59 0 
60 42 
61 ZST/ 00 
62 RCL 09 
63 3 
64 + 
65 FACT 
66 ST- 00 
67 XEQ 05 
68 0 
69 6 
70 ZST/ 00 
71 RCL 09 
72 FACT 
73 STO 08 
74 ZST* 02 
75 ZRCL 00 
76 ZSTO 01 
77 ZRCL 03 
78 ZINV 
79 RCL 08 
80 ST* Z 
81 * 
82 ZSTO 00 

83 Z<>W 
84 ZST+ 00 
85 NOP 
86 2 
87 ST/ 00 
88 ST/ 01 
89 RCL 09 
90 X=0? 
91 GTO 00 
92 E 
93 - 
94 FACT 
95 ST+ 00 
96 ZRCL 00 
97 ZSTO 01 
98 ZRCL 03 
99 RCL 09 
100 CHS 
101 Z^X 
102 Z* 
103 GTO 02 
104 LBL 00 
105 ZRCL 00 
106 ZSTO 01 
107 ZRCL 03 
108 ZLN 
119 Z- 
110 LBL 02 
111 ZRCL 02 
112 Z+  
113 RCL 09 
114 ZCHSX 
115 ZNEG 
116 ZAVIEW 
117 RTN 
118 LBL 05 
119 ZRCL 01 
120 ZST* 00 
121 END

 

Examples:  Calculate (n=2) Tetra- and (n-3) Penta-gamma of z=1+i, and  w=-1-i : 

 
1, ENTER^, ENTER^, 2, ZF$ “ZPSIN”   =>  “RUNNING…”  =>   0.369+J0.767 

1, ENTER^, ENTER^, 3, LASTF    =>  “RUNNING…”  =>  -1.523-J0.317 
1, CHS, ENTER^, ENTER^, 2, ZF$ “ZPSIN”  =>  “RUNNING…”  =>  -0.131+J0.733 

1, CHS, ENTER^, ENTER^, 3, LASTF   =>  “RUNNING…”  =>   2.977+J0.317 
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Inverse Gamma Function and Catalan Numbers {   ZIGAM  ,   ZCTLN  } 

 
Here’s the extension to the complex realm of the Inverse Gamma function first introduced in the 
SandMath module. Like its real variable counterpart, this is not a very useful beyond the academic 

interest: arter all, who needs to know what arguments yield a given gamma function result? 

 
Well if you’d ever need to know, here’s where you can get *some* answers - and I deliberately say 

some because in the complex plane this is a multi-valued function, which it’s yet to be seen whether it 
has any formation rule for the different branche…  but that, I guess, is another story altogether. 

 
You can refer to the SandMath manual for a description of the algorithm used, which is applied directly 

here simply replacing the real functions with their complex counterparts. 

 
The function is located in the -DELUXE section of the auxiliary FAT, and you can access it either by 

means of the sub-function launchers or via the extended “General Methods” launcher, ZL, [A], [R/S] 

 

Example1:  Obtain a complex value z  which yields (z) = 1+i 

 

1, ENTER^,   [ Z ], ALPHA, “ZIGAM”  -> “RUNNING…” 

       0 0.412574972 – J 0.404915377  

 
Note that the function follows an iterative process (Newton’s method actually_. Each time an iteration is 

completed the program shows the module of the difference between the current and previous 
arguments, which when convergence exists it will be decreasing until it’s less that the 1 E-8 tolerance 

used. 

 

Example2: Use the ZLASTF feature to obtain which real value x yields (x) = 2 

 

  [ Z ], 2,   [ Z ], [ , ],[  , ]   -> “RUNNING…” 
       0.442877396 – J 9.0000000 E-24  

 

 
Complex Catalan Numbers 
 
Based on the classic combinatorian definition, one can extend the concept using the Gamma function 

instead of the factorials as follows: 

 

 
 

Where n is a complex number (not neccessarily an integer). So we see it basically consistes of two 
calculations of the Gamma function, which in the 41Z module is convenientely implemented as an 

MCODE function – so a trivial FOCAL routine does the trick. 
 

Examples: Obtain the C(n) values for n=1, 2, 3, and i+1 

 
C(1) =  1.000000001 + J0 

C(2) =  1.999999990 + J0 
C(3) =  5.000000011 + J0 

C(1+i) = 0.661301105 + J 0.443764974 
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10.1.  Riemann’s Zeta function.  {   ZZETA  } 

 
Included in the 41Z is an implementation of the Borwein algorithm to calculate the Zeta function. 
Considering the task at hand this does an excellent job, providing accurate results in acceptable 

execution times. Obviously won’t win the speed contest, nor will it help you find non-trivial zeroes 
outside of the critical strip ☺ 

 
Example: calculate (2) 

 

2, ZREAL^, ZZETA   ->  1,645+J0 
FIX 9     ->  1,644934066 

 
The program is a modified version of JM Baillard’s ZETAZ, written for complex arguments – only 

adapted to use the 41Z complex stack and related functions. See the program listing in next page if 

interested. The algorithm is summarized as follows: 

 
• For the case Re(z)<0.5  ,  2 formulas may be used 

 
(z) = (1-z) 2^z ^(z-1) sin((z/2)) (1-z) 

  

(z) = (1-z) ^(z-1/2) ((1-z)/2) / (z/2) 

 
 

• If Re(z) >=0.5 
 

(z) = (z) / (1-2^(1-z)) 

where: 

 (z) = {(-1)^k/k^z}, k=0,1,2,… 

 
is calculated by: 

 (z) = (-1/dn) {(-1)^k (dk-dn)/(k+1)^z}, k=0 to n-1 

 
where: 

dk = n {(n+j-1)! 4^j )/((n-j)!(2j)!} , j=0 to k  

with an error: 
 
 | e | <= (3/(3+sqrt(8))^n) [ 1+2 Im(z) ] exp [ p Im(z) / 2] 
 
Note that dk is calculated using the following approach: 
 
dk = e(0)+e(1)+...+e(k)  
 
where : 
 
e(0)=1 and  
 
                2(n^2 – j^2) e(j) 
 e(j+1) = ---------------------- 
                  [(1+j)(2j+1)]
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FOCAL program for ZZETA:-   Uses R00 to R11. No Flags used. 
 

01 LBL "ZZETA" 51 ST+ X 101 X^2

02 X=0? 52 LN1+X 102 RCL 10

03 GTO 00 53 + 103 DSE X

04 .5 54 3 E10 104 NOP

05 CHS 55 LN 105 X^2

06 ZAVIEW 56 + 106 -

07 RTN 57 8 107 ST+ X

08 LBL OO 58 SQRT 108  /

09 CF 00 59 3 109 STO 03

10 ZSTO 03 R06 - Re(z) 60 + 110 ST+ 05

11 ZSTO 00 R07 - Im(z) 61 LN 111 DSE 10

12 ,5 62  / 112 GTO 01

13 X<=Y? 63 INT 113 RCL 05

14 GTO 00 64 E 114 ST/ 08

15 SF 00 65 + 115 ST/ 09

16 SIGN 66 STO 10 116 RCL 07

17 - 67 STO 02 117 CHS

18 ZNEG R06:  - Im(z) 68 LASTX 118 STO 11

19 ZSTO 03 R07: 0,5-Re(z) 69 STO 11 119 RCL 06

20 XEQ 00 70 STO 03 120 CHS

21 ZRCL 00 71 STO 05 121 2 

22 ZNEG 72 CHS 122 LN

23 E 73 X<>Y 123 *

24 + 74 Y^X 124 E 

25 2 75 CHS 125 RAD

26 ST/ Z 76 STO 04 126 P-R

27  / 77 CLX 127 ENTER^

28 ZGAMMA 78 STO 08 128 DEG

29 Z* 79 STO 09 129 E

30 ZRCL 00 80 LBL 01 130 ST+ 11

31 ,5 81 ZRCL 03 131 -

32 - 82 ZNEG 132 RCL 11

33 PI 83 RCL 10 133 2^X-1

34 X^Z 84 X^Z 134 ST* Z

35 Z* 85 RCL 05 135 X<> T

36 ZRCL 00 86 RCL 04 136 ST* T

37 2 87 CHS 137 ST+ T

38 ST/ Z 88 STO 04 138 RDN

39  / 89 * 139 +

40 ZGAMMA 90 ST* Z 140 ZST/ 04

41 Z/ 91 * 141 ZRCL 04

42 ZAVIEW 92 ZST+ 04 142 FC? 00

43 RTN 93 RCL 10 143 ZAVIEW

44 LBL 00 94 ENTER^ 144 END

45 PI 95 ST+ Y

46 2 96 ST* Y

47  / 97 -

48 RCL 06 Re(z) 98 RCL 03

49 ABS 99 *

50 ST* Y 100 RCL 02
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10.2  Lambert W function. {  ZWL  ,  ZAWL  } 
 

 
ZWL Lambert W(z)  FOCAL program 

ZAWL Inverse of Lambert-W z* e^z Does LastZ 

 
These two functions provide a dedicated way to compute the Lambert-W function and its inverse. 
The FOCAL program uses an iterative method to compute W(z), using z0=1+Ln(z) as initial guess for 

Re(z)>0, and simply z0=(1+ i ) elsewhere.  
 

This program is based on a real-mode version written by JM Baillard, just applying the seamless 

transposition method provided by the 41Z module. In the vast majority of cases convergence is 
provided for all complex arguments, with 8-decimal digits accuracy. It uses the Z=WR? Function on 

FIX 8 mode to determine that two consecutive iterations are equal. 
 

The inverse function is a simple product: W-1(z) = z * e^z.  

 
Not worth the FAT entry, you say? For one thing, doing it in MCODE allows for 13-digit accuracy in the 

calculations. Besides, how often will you forget the exact formula? Better safe than sorry… 

 

 
Note that ZWL is a FOCAL program, and thus you 

won’t be able to use LASTZ to recover the initial 
argument. This is common to all the function 

simplemented as FOCAL routines instead of full MCODE 

functions. 
 

 
Examples. Calculate W(1+i) and trace back the original 

argument using the inverse function. 

 
1, ENTER^, XEQ “ZWL“  ->  0.657+J0.325 

ZAWL    ->  1.000+J1.000 
 

 
 

Another version using SOLVE is listed in section 12.2, with slightly more accurate results , but 

significantly slower execution and a few trouble spots (near 1/e and -1/e). 

1 LBL "ZWL"

2 Z=0?

3 GTO 00

4 ZSTO (00)

5 E

6 +

7 Z=0?

8 ISG Y(2)

9 ZLN

10 FIX 8

11 LBL 01

12 ZREPL

13 ZNEG

14 ZEXP

15 ZRCL (00)

16 Z*

17 Z-

18 Z<>W

19 E 

20 +

21 Z/

22 Z-

23 Z=WR?

24 GTO 00

25 GTO 01

26 LBL 00

27 FIX 3

28 ZAVIEW

29 END
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11. Complex Means, Elliptic integrals and DFT. 
 
This section covers the MCODE functions to calculate Arithmetic, Harmonic and Geometric single Means 

on a set of data, plus the dual means AGM and GHM of two complex arguments. These are related to 
the Elliptic Integrals, also obtained via the Hypergeometric function and other dedicated formulas. 

  
Table 10.1. Complex Means Functions. 
 

ZAMN Complex Arithmetic Mean Control word in X bbb.eee 

ZHMN Complex Harmonic Mean Control word in X bbb.eee 

ZGMN Complex Geometric Mean Control word in X bbb.eee 

ZAGM Complex Arithmetic-Geometric Mean Arguments in Z, W Does LastZ 

ZGHM Complex Geometric-Harmonic Mean Arguments in Z, W  Does LastZ 

 
For the single means the data is expected to be stored in a contiguous set of Compex Data registers, 
ZRbbb to ZReee. You can use the utility  ZINPT to populate those registers. The functions require the 

control word in the X-register to define the register range for the calculation. 
 

Example1.  Calculate the three single means for the set of complex values stored in the following data 

registers:       ZR00 = -1 – i  ;    ZR01 = 1 + i  ;     ZR02 = 2 + 2i  ;    ZR03 = 3 + 3i 
 

0.003, ZF$ “ZAMN”  => 1.250(1+J)  
0.003, ZF$ “ZHMN” => 4.800(1+J)  

0.003, ZF$ “ZGMN” => 2.213+J0  

 
For the dual means, the same definitions for real numbers hold in the complex plane. There’s no special 

considerations to the Arithmetic and harmonic means of complex arguments, but since the n-th root is 
used in the Geometric mean, it’d have a multi-value result. This becomes of singular importance in the 

calculation of the arithmetic-geometric mean of two values, as the convergence has many different 
paths – all leading to different final results. 

 

The implementation uses the following criteria for  chosen value of the geometric mean, c= sqr(ab)  
(see: https://www.math.leidenuniv.nl/scripties/carls.pdf): if it is the “correct” square root for the 
geometric mean step, then Im[c/(a+b)] is  strictly positive (i.e. > 0), otherwise replace c with -c.  
Furthermore this imposes the condition that Im(c) and Im(a+b) have the same sign. 

 

Example 2.  Calculate the dual means AGM and GHM for the complex pair:  z= 2-4i  and  w= -3+i 
 

4, CHS, ENTER^, 2, ZENTER^  2-J4 
1, ENTER, 3, CHS, XEQ “ZAGM”  =>  -1.343-J2.146 
 

 
 
4, CHS, ENTER^, 2, ZENTER^  2-J4 

1, ENTER, 3, CHS, ZF$ “ZGHM”  =>  -4.268-J3.604 

 
Which verifies the known relationship: 

https://www.math.leidenuniv.nl/scripties/carls.pdf
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11.1  Complex Elliptic Integrals. 

 
Table 10.2. Complex Elliptic Integrals. 

 

ZELIP1 Incomplete Elliptic Int. 1st kind Complex Argument in 
{Z,Y}, real modulus in X 

Needs 
SandMath ZELIP2 Incomplete Eliiptic Int. 2nd kind 

ZELIPE Complete Ellipt. Int. 2nd kind 

Complex Modulus in “Z” 

Uses ZHGF 
ZELIPK Complete Ellipt. Int. 1st kind 

ZELK Uses ZAGM for Complete Ellip.Int. Uses ZAGM 

ZELPKE Both Complete Integrals JM Baillard 

 
The Elliptic integrals are covered in several FOCAL programs as shown in the table above. Note that:  
 

• For the Incomplete types the amplitude can be a complex number but the modulus is expected 

to be a real value. This method uses dedicated formulas that apply the real expressions on a 
repeated basis according to changes of variable , and it requires the SandMath module to be 
plugged in as well. Here the function name ZELIP1 corresponds to F(z; m) , and ZELIP2 

corresponds to E(z; m).   
 

• for the Complete types (where the amplitude is therefore 90 degrees) the modulus can be a 

complex number.  Here two methods are available, one based on the hypergeometric function 
(slower and requires |modulus|<1), and another based on the complex AGM – faster and 

without that restriction. 

 

• No provision is made for the case where both amplitude and modulus are complex numbers.  
To check the results you can use the syntax “EllipticF”  and “EllipticE”  on WolframAlpha using 

two arguments for incomplete cases or just one argument  for complete cases. 
 

 
Let’s see a few examples next. Be aware that the execution time can range from long to very long 

depending on the case.  You can abort the execution pressing the R/S key at any time. 

 
 

Example1: calculate the complete Elliptic integrals for  a = 2+3i 
 

The first thing we notice is that |z|>1, thus the hypergeometric method is not going to converge – so 

discard using ZELIPE and ZELIPK. Being based on the AGM method, function ZELK is the faster way 
to obtain the 1st. kind resut - but using ZELPKE we can get both results on a single execution as 

follows: 
 

3, ENTER^, 2, ZF$ “ZELPKE”   =>  1.043+J0.630 

Z<>W     =>  1.473-J1.232 
 

 
Example 2. Calculate the incomplete Elliptic integrals for  a= 1-i,  m=0.5 

 
1, CHS, ENTER^, CHS, ENTER^, .5, ZF$ “ZELIP1” =>   0.804+J1.163 

EllipticF(1-i, .5): http://www.wolframalpha.com/input/?i=EllipticF%281-i,+.5%29 

 
1, CHS, ENTER^, CHS, ENTER^, .5, ZF$ “ZELIP2” =>   1.128+J0.789 

EllipticE(1-i, .5):  http://www.wolframalpha.com/input/?i=EllipticE%281-i,+.5%29 

 
 
 
 

http://www.wolframalpha.com/input/?i=EllipticF%281-i,+.5%29
http://www.wolframalpha.com/input/?i=EllipticE%281-i,+.5%29
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Formulas used (from Abramowitz-Stegun, Section 14.4) 

 
Writing z= (phi+ i psi) then we have for the first kind: 

 

 
 

Where cot^2 () is the positive root of the quadratic equation: 

 

 
 

And similarly for the second kind integral:  

 
where now: 

 
as you can see an elaborate set of equations that requires a relatively long FOCAL program even if 
some functions from the SandMath really expedite things significantly. Refer to next page for the 

FOCAL program listing as a reference. 
 

The solution is therefore expressed as a linear combination of the real-variable case for the Elliptic 
integrals, which are also included in the SandMath as functions ELIPF and LEI1 and LEI2. 
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Program Listing:  Incomplete Elliptic Integrals. (SandMath required.) 
 
 Data Registers: R00-R08 ;   User flag: F1 
 

 
01 LBL  "ZELIP1" 
02 SF 01 
03 GTO 00 
04 LBL "ZELIP2" 
05 CF 01 
06 LBL 00 
07 RAD 
08 STO  00 
09 RDN 
10 STO  01 
11 RDN 
12 HSIN 
13 X^2 
14  / 
15 RCL  00 
16 E  
17 - 
18 * 
19 E  
20 STO T(0) 
21 RDN 
22 QROOT 
23 X<Y? 
24 X<>Y 
25 STO 02 
26 RCL 01 
27 TAN 
28 X^2 
29 * 
30 E  
31 - 
32 RCL 00 
33  / 
34 SQRT 
35 ATAN 
36 STO 01 
37 E  
38 RCL 00 
39 - 
40 RCL 01 
41 ELIPF 
42 FS? 01 
43 GTO 00 
44 STO 01 
45 RCL 00 

46 RCL 02 
47 SQRT 
48 1/X 
49 ATAN 
50 ELIPF 
51 STO 00 
52 ZRCL 00 
53 ZAVIEW 
54 RTN 
55 LBL 00 
56 STO 08 
57 RCL 00 
58 RCL 02 
59 SQRT 
60 1/X 
61 ATAN 
62 STO 02 
63 SIN 
64 X^2 
65 * 
66 E 
67 - 
68 CHS 
69 STO 03 
70 SQRT 
71 RCL 00 
72 * 
73 RCL 02 
74 E 
75 P-R 
76 * 
77 * 
78 RCL 01 
79 SIN 
80 X^2 
81 * 
82 RCL 01 
83 SIN 
84 X^2 
85 STO 06 
86 RCL 00 
87 SQRT 
88 ASIN 
89 COS 
90 RCL 01 

91 SIN 
92 * 
93 X^2 
94 CHS 
95 E 
96 + 
97 SQRT 
98 RCL 03 
99 * 
100 RCL 01 
101 E 
102 P-R 
103 * 
104 * 
105 RCL 02 
106 STO 05 
107 SIN 
108 * 
109 X^2 
110 RCL 00 
111 * 
112 RCL 01 
113 COS 
114 X^2 
115 + 
116 ST/ 06 
117 ST/ 07 
118 RCL 08 
119 ST+ 07 
120 E 
121 RCL 00 
122 STO 08 
123 - 
124 RCL 01 
125 LEI2 
126 ST- 07 
127 RCL 08 
128 RCL 05 
129 LEI2 
130 ST+ 06 
131 ZRCL 03 
132 ZAVIEW 
133 END 

 
Granted, this listing doesn’t have much of a 41Z flavor to it since it really operates on real variable 

functions. Pulling all stops with the aid of the SandMath we deflect the complex variable with linear 

combinations as per the formulas shown before. 
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Program Listing:  Complete Elliptic integrals 

 
Data registers: R00-R08 ; no user flags. 

 

 
01 LBL "ZELPKE  
02 ZNEG  
03 ZSTO 02  
04 E  
05 STO 08  counter 
06 STO 00  real part 
07 +  1-z 
08 ZSQRT  sqr(1-z) 
09 ZSTO 01  initial value 
10 CLX  
11 STO 01  initial z0 = (1+0i) 
12 LBL 01  
13 ZRCL 00  
14 ZRCL 01  
15 Z-  
16 2  
17 ST/ Z  
18  /  arithmetic mean 
19 Z^2  AM^2 
20 2  
21 RCL 08  k 
22 Y^X  2^k 
23 ST* Z  
24 *   
25 ZST- 02  
26 ZRCL 00  
27 ZRCL 02   -z - (2^k *AM^2) 
28 Z+  
29 2  
30 ST/ Z  
31  /  halves it 
32 ZSTO 03  
33 ZRCL 01  

34 ZRCL 00  
35 Z*  
36 ZSQRT  Geometric Mean, GM 
37 ZSTO 01  
38 ZRCL 03  
39 ZSTO 00  
40 CLX  
41 SIGN  
42 ST+ 08  
43 RCL 08  
44 8  
45 X>Y?  
46 GTO 01  -63 bytes 
47 ZRCL 00  
48 0  
49 2  
50 ST* Z  
51 *  doubles it 
52 ZINV   
53 ZPI*  more accurate 
54 ZSTO 00  
55 ZRCL 02  
56 2  
57 ST/ Z  
58  /  halves it 
59 E  
60 +  
61 Z*  
62 ZSTO 01  
63 ZRCL 00  
64 ZAVIEW  
65 END 

 
Upon completion both complete integrals of the 1st and 2nd kinds are left in the complex stack levels Z 

and W. They’re also saved in ZR00 and ZR01 respectively. 
 

 
 
 
 
 
 
 
Note.- Many of these functions appear on CAT’2 as M-Code entries, instead of as FOCAL programs. This 
is achieved by using a clever technique shown by W. Doug Wilder (author of the BLDROM), which 

allows cleaner and convenient program listings (no ugly “XROM” description before the program title).  

These programs however cannot be copied into main memory using COPY. Another drawback is that 
frequently they are interpreted as PRIVATE by the 41 OS, nor could they be “looked-up” using GTO + 

global LBL, since there’s no global LBL for them. 
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11.2  Complex Discrete Fourier Transform  {[ZDFT], [ZIDFT[}. 

 
An interesting subject on its own right, the Discrete Fourier Transform has had little coverage on the 41 
platform – perhaps the single exception being JM Baillard’s Spectral Analysis pages. A reason for this 

scarcity may be the slow CPU speed, rendering the applicability to just academic cases for small sets of 
data. The advent of the 41CL and or course SW emulators make this less of an issue, as the examples 

below will show. 

 
On the 41Z Deluxe the direct and inverse DFT are implemented entirely as MCODE functions. The “n” 

data points are expected to be in contiguous Complex Data registers, starting with ZRbbb to ZReee. 
Then you enter the control word “bbb.eee”  - complex indexes -  in the X register and call the function. 

You can use ZINPT to enter those values in memory.  
 

When the execution completes the transformed data values are placed in the following block of 

Complex data registers {ZR(eee+1) to ZR(eee+n)}, and the new control word is left in X – so you can 
use ZOUPT to review the results. 

 
This implementation just scratches the surface of the topic. It uses the straight-forward definition for 

the transform (not fast algorithms like in the FFT case). The code however has several shortcuts to 

accelerate the calculations when any of the indexes are zero – which results in an exponential value 
equal to one. See the formulas below for the direct (left) and inverse (right) cases. 

 

     
 

Unavoidably rounding errors are the reason that some result values won’t show as integers. This is an 
inherent limitation of the 10-digit accuracy, which unfortunately can’t be extended to 13-digit in many 

areas despite being written in MCODE.  
 

Example.   Calculate the DFT for the set of values in the left colum below. (see application at: 
http://calculator.vhex.net/calculator/fast-fourier-transform-calculator-fft/1d-discrete-fourier-transform).  

 

            
To obtain the original sample (assuming complex regs C01 – C08 were used) you can do:  

18,002016, REGMOVE, 1.008, XEQ ”ZIDFT” 

 
A sample size of 8 complex values takes about 25 seconds to complete on a normal-speed HP-41, and 

just shy of 1 second on the 41CL at Turbo-50; not bad for such a venerable machine. 

http://calculator.vhex.net/calculator/fast-fourier-transform-calculator-fft/1d-discrete-fourier-transform
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The FOCAL program below is a rough equivalent of the MCODE function. Execution times for this 

program are about four to five times longer than the MCODE counterpart. 
 

01 LBL "ZDFT"  

02 CF 01  
03 GTO 00  

04 LBL "ZIDFT"  

05 SF 01  

06 *LBL 00 

07 STO 00 N 
08 E3/E+  

09 STO M(5) j,00N 
10 *LBL 01 outer loop 

11 VIEW M(5)  
12 RCL 00  N 

13 STO N(6)  

14 E3/3+  
15 STO O(7) k,00N 

16 RCL 5(M) j,00N 
17 INT  j 

18 ST+  N(6) dest: ZR(N+j) 

19 E  
20 -  j-1 

21 PI  
22 *  

23 ST+ X(3) 2p.(j-1) 

24 RCL 00  N 
25  /  2p.(j-1)/N 

26 STO 01  
27 CLZ  

28 ZSTO IND N(6) reset destination 

29 *LBL 02  inner loop 
30 RCL 0(7)  k,00N 

31 INT   k 
32 E  

33 -   k-1 

34 RCL 01  2p.(j-1)/N 
35 *   2p.(j-1)(k-1)/N 

36 FC? 01  
37 CHS  

38 E  
39 P-R  

40 ZRC* IND O(7)  

41 ZST+ IND N(6)  
42 ISG O(7)  next k 

43 GTO 02  loop back 
44 FC? 01  

45 GTO 00  

46 ZRCL IND 01  
47 RCL 00  

48 ST/ Z  
49  /  

50 ZSTO IND 01  

51 *LBL 00  
52 ISG M(5)  next j 

53 GTO 01  loop back 
54 END  

 

The functions will check that enough data registers are available. If not, the “NONEXISTENT” message 

will be presented; adjust the size and try again. Make sure complex data register ZR00 is not used to 

store the sample – which must start at ZR01. This is because (real) data registers R00 and R01 are 
used for scratch calculations by these functions. 
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12.  Complex General Methods. 
 
Most of the following functions are complex versions of general methods, included either to illustrate 

actual programming of the complex number functions of the module or to provided a parallel 

environment to the real-variable case. 
 

 Function Description Author 

 ZMTV Multi-valued functions ÁM 

 ZSOLVE Solves f(z)=0 by secant method ÁM 

 ZNWT Complex Step (Real) Differentiation ÁM 

 ZHALL Solves f(z)=0 by Halley’s method ÁM 

 ZDERV Complex 1st & 2nd Deriviatives Greg McClure 

 ZCF2V Complex Continued Fractions Greg McClure 

 ZCSX Fresnel Integrals. JM Baillard 

 ZKLV1 Weber & Anger functions JM Baillard 

 
 
 

12.0  Real Functions as Complex Extensions  {  ZCSX  ,  ZKLV1 } 
 

Here’s an interesting approach to the calculation of some real-variable functions, treated as the real 
and imaginary parts of a complex extension that uses complex-variable arguments. Two examples are 

included: 

1. The Kelvin functions of 1st kind, ber(n, x) & bei(n, x); and 
2. The Fresnel Integrals, C(x) and S(x)  

 
The expressions are based on the hypergeometric function, which also in the complex variable 

becomes a real power horse of high applicability for the programming of the routines.  
 

bern(x) + i bein(x) = (x (i-1)/sqrt(8))n  0F1( n+1 ; i x2/4 )  /  (n+1) 
 

c(x) + i s(x) = x 1F1( 1/2 ; 3/2 ; i  x2/2 ) 
 
Note that the input parameters are real values, and thus are expected to be in the real stack X- and 

Y- registers. The output will show a complex number, where it’s to be understood it reflects the two 
solutions arranged as real and imaginary parts. 

 
 

Example1: Calculate the Kelvin functions for x=  and n=sqrt(2) 

 

2, SQRT, PI, ZF$ “ZKLV1” -> “ RUNNING…”  =>   -0.674-J1.597 

FIX 9  for bersqrt(2) ()    =>  -0.674095956   

X<>Y  for beisqrt(2) ()    =>  -1.597357212   

 
 

Example2: Calculate the Fresnel Integrals for x= 1.4 

 
1.4, ZF$ “ZCSX” -> “RUNNING…” => 0.543+J0.714 

FIX 9 for C(1,4)    => 0.543095784  
X<>Y for S(1.4)    => 0.713525077  

 
Note that x must remain "small", say x < 2.  For x = 3 , the errors are of the order of  10 -6 and the 

results are meaningless with x = 4 
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12.1  Multi-valued Functions.  {  ZMTV  } 

 

ZMTV Multi-valued functions   

 
This program calculates all possible values for the multi-valued functions, including the n different Nth. 

roots of a complex number, all the inverse trigonometric and hyperbolic, plus the logarithm itself 
(source of all the multi-valued scenarios). 

 
Due to the 64-function limit of the 41 ROM FAT structure. these routines are all part of a common 

entry into the module catalog. To access it you use the ZNEXT prompt, followed by the  XEQ   key – 

 i.e: 

[ Z ], [“A”], [SHIFT], [“K”]   
 

When invoked, the program prompts a menu of choices as follows: 

 
A – ASIN B – ACOS   C: Nth. Root  D: ATAN   E: Ln 

a – HSIN b.- HACOS    d.- HATAN 

 

Or more succinctly:               
 
For each case the program will calculate the principal value followed by all the other values with each 
subsequent pressing of [R/S]. Remember that the top keys need to be free from user assignments for 

this scheme to work, as per the 41 OS conventions. 

 
All trigonometric functions expect z into the Z level of the complex stack. Data entry is the same for 

all of them except for the n-th root, which expects N in the real-stack register X, and z in Z.  Only the 
first N values will be different, running into cyclical repetition if continued. 

 

This is a simple program, mostly written to document an example for the 41Z functions.  Use it to get 
familiar with these concepts, and to understand fully the NXT function set as well. 

 
Note that in version 9L the FAT entry for ZMTV was removed – the same functionality exists 

accessed via the launcher menus. Refer to the following sections for details. 
 

 

Example: Obtain all values of ASIN [Sin(1+j)] 
 

1, ENTER^, ZSIN -> 1,298+j0,635 
ZMTV   -> “S:H C:H N: T:H L:”  

 A    -> 1,000+j1 

R/S   -> 2,142-j1 
R/S   -> 7,283+j1 

R/S   -> 8,425-j1 

etc… 
 
Alternatively, using the NXTASN function: 
 

Note that here we start with the first value of the function, i.e. 1+j 

 
1, ENTER^, NXTASN -> 7,238+j1 

Z<>W   -> 2,142-j1 
NXTASN  -> 8,425-j1 

NXTASN  -> 14,708-j1 
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Program listing.- Alternative older version, superseded in revision 4L. 
 
Note the use of flag 22 for numeric entry: the catalog of functions will display continuously until one 
choice is made, (expected between 1 and 8), and all initial prompting will be skipped. 

 

 
1 LBL "ZMTV" 48 LBL 93 95 LBL 92

2 CF 22 49 ZASIN 96 ZHACOS

3 LBL 20 50 ZSTO 00 97 GTO 07

4 "FCN#.=? 1-8 51 ZAVIEW 98 LBL 96

5 AVIEW 52 E 99 ZHATAN

6 PSE 53 STO 02 100 LBL 06

7 PSE 54 LBL 03 101 ZAVIEW

8 FC? 22 55 ZRCL 00 102 PSE

9 GTO 90 56 ZNEG 103 PI

10 INT 57 ZSTO 00 104 +

11 ABS 58 RCL 02 105 GTO 06

12 90 59 PI 106 LBL 97

13 + 60 * 107 ZLN

14 RDN 61 + 108 LBL 07

15 SF 25 62 ZAVIEW 109 ZAVIEW

16 GTO IND T 63 PSE 110 PSE

17 GTO 20 64 E 111 NXTLN

18 LBL 90 65 ST+ 02 112 GTO 07

19 CF 21 66 GTO 03 113 LBL 98

20 "1:- ZACOS" 67 LBL 91 114 CF 00

21 AVIEW 68 ZACOS 115 "N=?"

22 PSE 69 ZSTO 00 116 PROMPT

23 "2:- ZACOSH" 70 ZAVIEW 117 ABS

24 AVIEW 71 E 118 INT

25 PSE 72 STO 02 119 X=0? zeroth. Root?

26 "3:- ZASIN" 73 LBL 01 120 RTN

27 AVIEW 74 ZRCL 00 121 STO 00

28 PSE 75 RCL 02 122 E

29 "4:- ZASINH" 76 ST+X 123 - N-1

30 AVIEW 77 PI 124 STO 01

31 PSE 78 * 125 X=0?

32 "5:- ZATAN" 79 STO 03 126 SF 00 unit root?

33 AVIEW 80 + 127 E

34 PSE 81 ZAVIEW 128 + N

35 "6:- ZATANH" 82 PSE 129 1/X 1/N

36 AVIEW 83 ZRCL 00 130 Z^X main value

37 PSE 84 ZNEG 131 SF 21

38 "7:- ZLN" 85 RCL 03 132 ZAVIEW

39 AVIEW 86 + 133 FS?C 00

40 PSE 87 ZAVIEW 134 GTO 08

41 "8:- Z^1/N" 88 PSE 135 LBL 05

42 AVIEW 89 E 136 RCL 00

43 PSE 90 ST+ 02 137 NXTNRT

44 GTO 20 91 GTO 01 138 ZAVIEW

45 LBL 95 92 LBL 94 139 DSE 01

46 ZATAN 93 ZHASIN 140 GTO 05

47 GTO 06 94 GTO 07 141 LBL 08

142 CF 21

143 END  
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 12.2  Solution to f(z)=0.  {  ZSOLVE  ,  ZHALL } 

 

 

The next application uses the Secant Method to obtain roots of a complex equation, given two 
estimations of the solution. A general discussion on root-finding algorithms is beyond the scope of 

this manual – this example is intended to show the capabilities of the 41Z module, in particular how 
programming with complex numbers becomes as simple as doing it for real numbers using the native 

function set. 

 
See the following link for further reference on this subject (albeit just for real variable): 

http://en.wikipedia.org/wiki/Secant_method 
 

The secant method is defined by the recurrence 
relation: 

 

 
 
which will be calculated until there’s no 

significant contribution to the new value – as 

determined by the function Z=WR?. 

 
 
Program listing:- 
 
As it’s the case with this type of programs, the 
accuracy of the solution depends of the display 

settings, and the convergence (i.e. likelihood to 
find a root) will depend on the initial 

estimations.   

 
The program works internally with 8-digit 
precision, therefore will largely benefit from the turbo-mode settings on V41 to dramatically reduce 
the execution time. 

 

 
 

http://en.wikipedia.org/wiki/Secant_method
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User flag 06 is for subroutine usage:  when set, the data input will be skipped. In that case the 
relevant data is expected to be in the appropriate registers, as follows: 

 
ZR03= Initial estimation z1,   

ZR04 = initial estimation z2 

R12 = Function’s name,   
FIX set manually to required precision. 

 
 
Example 1.- Calculate one root of the equation:  Sinh(z) + z^2 + pi = 0 
 

Which we easily program using 41Z functions as follows: 

 
LBL “ZT”, ZHSIN, LASTZ, Z^2, Z+, PI, +, END. 

 
Using the initial estimations as z0=0, and z1=1+i, we obtain: 

 

Root = -0,27818986 + j 1,81288037 
 
 
Example 2.- Calculate two roots of the equation:  e^(z) = z 

 
programmed as follows: LBL “ZE”, ZEXP, LASTZ, Z-, END 

 

using the estimations: {z0=-1-j & z1=1+j}  - note that both roots are conjugated! 
 

Root1 = 0,3181315 + j 1,3372357  
Root2 = 0,3181315 - j 1,3372357 

 
 
Example 3.- Calculate the roots of the polynomials from section 10.1 and 10.3: 

 
P2 = (1+i)*z2 + (-1-i)*z + (1-i)     

P3 = z3 + z2 + z + 1       

P4 = (1+2i)*z4 + (-1-2i)*z3 + (3-3i)*z2 + z – 1 
 

Re-written using the Honer’s method as follows: 
 

P2 = z [(-1-i) - z(1+i) ] + (1-i) 
 P3 = z [1 + z(1+z) ] +1 

 P4 = z {1 + z [(3-3i) – z [(1+2i) - z(1+2i) ] ] } - 1 

 
Use the following estimations for the P4 example:- 

 
{z0=-1-j ; z1=1+j} for root #1 ; {z0=1+j ; z1=2+2j}  for root #2,  

{z0=-2j ;  z1= 2j} for root #3 ; {z0= 4j ;  z1= 5j} for root #4 

 
 

ZSOLVE Register Usage. 
 

Notice that to avoid register incompatibilities ZSOLVE uses complex registers ZR03 – ZR06 (i.e. 
registers R06 – R12). This allows its direct application to calculate zeroes of functions using the lower 

register range (which is the typical case), like the Exponential integral and associates, which in turn 

all use complex registers ZR00 – ZR02  (i.e. R00 - R05) . This removes the need to use cumbersome 
REGMOVE program steps with its memory-hungry control words. 

 
The programs below can be used to obtain the roots as per the examples given before: 
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(1+i)*z2 + (-1-i)*z + (1-i) = 0 (1+2i)*z4 + (-1-2i)*z3 + (3-3i)*z2 + z – 1 

1 LBL " Z2" 1 LBL " Z4" 1 LBL " Z4" 

2 ZREPL 2 ZREPL 2 ZREPL

3 E 3 2 3 4

4 ENTER^ 4 ENTER^ 4 Z^X

5 Z* 5 1 5 ZENTER^

6 ZENTER^ 6 Z* 6 2

7 -1 7 LASTZ 7 ENTER^

8 ENTER^ 8 Z- 8 1

9 Z+ 9 Z* 9 Z*

10 Z* 10 ZENTER^ 10 Z<>W

11 ZENTER^ 11 -3 11 3

12 -1 12 ENTER^ 12 Z^X

13 ENTER^ 13 CHS 13 ZENTER^

14 CHS 14 Z+ 14 -2

15 Z+ 15 Z* 15 ENTER^

16 END 16 1 16 -1

17 + 17 Z*

 Z3 + Z2 + Z + 1 18 Z* 18 Z+

1 LBL " Z3" 19 1 19 Z<>W

2 ZREPL 20 - 20 Z^2

3 1 21 END 21 ZENTER^

4 + 22 -3

5 Z* 23 ENTER^

6 1 24 CHS

7 + Note the usage of stack-lifting 25 Z*

8 Z* functions to separate entries 26 Z+

9 1 ( LASTZ  and ZENTER^ ) 27 Z+

10 + 28 1

11 END 29 -

30 END  
 
Lastly, a few other excellent programs written by Jean-Marc Baillard address the general solution to 

the equation f(z)=0. They don’t use functions from the 41Z module, but are mentioned here for their 
obviously close related content. The programs can be found at the following link: 

http://www.hpmuseum.org/software/41/41cmpxf.htm 
 

http://www.hpmuseum.org/software/41/41cmpxf.htm
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Application example.- Using ZSOLVE to calculate the Lambert W function. 
 

In this example we see a few techniques applied together, combining the capabilities of the 41Z in a 
convenient way. The solution is a direct application of the definition, requiring very simple extra 

programming – albeit with the logical slow performance. 

 
The Lambert W  function is given by the following functional equation: 
 

z = W(z) eW(z),   for every complex number z. 

 
Which cannot be expressed in terms of elementary functions, but can be properly written with the 
following short program: 

 
The complex value is expected to be in the Z complex stack level, and 

X,Y registers upon initialization.  Set the FIX manually for the required 

precision. 
 

Because ZSOLVE uses all the complex stack levels and registers 0 to 
6 (Note: this was changed in revision 4L – see pg. 59) , the argument 

is saved in the complex register 4 – corresponding to real registers 8 

and 9, thus a SIZE 10 or higher is required (see register 
correspondence map below). 

 
We solve for W(z)=z, using as the function initial estimations the 

logarithm of the same argument and the same point plus one, 
perhaps not a refined choice but sufficient to ensure convergence in 

the majority of cases. Some calculated values are: 

  
 

 
 

 
This example is not meant to compete with a dedicated program using an iterative algorithm, yet it 

showcases the versatility of the approach. The obvious speed shortcomings are diminished when ran 
on  the 41CL or modern emulators like V41. 

 
 
The Taylor series of W0 around 0 is given by:  

  
 
Another technique (somehow a brute-force 

approach) would employ this definition to calculate 
successive terms of the summation until their 

contribution to the sum is negligible. This method 

would only be applicable within the convergence 
region. 

 
 

See the following links for further references on the Lambert W function: 

http://en.wikipedia.org/wiki/Lambert_W_function 
http://mathworld.wolfram.com/LambertW-Function.html 

http://en.wikipedia.org/wiki/Lambert_W_function
http://mathworld.wolfram.com/LambertW-Function.html
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12.3. Newton’s Method with Complex Step Differentiation. 
 

This method is used to calculate real function derivatives, just as a quasi-magical application of 

complex variables. Complex step differentiation is a technique that employs complex arithmetic to 
obtain the numerical value of the first derivative of a real valued analytic function of a real variable, 

avoiding the loss of precision inherent in traditional finite differences. This is then used n Newton’s 
method in the usual way. 

We're concerned with an analytic function. Mathematically, that means the function is infinitely 

differentiable and can be smoothly extended into the complex plane. Computationally, it probably 

means that it is defined by a single "one line" formula, not a more extensive piece of code with if 
statements and for loops. 

Let F(z) be such a function, let x0 be a point on the real axis, and let h be a real parameter. 

Expand F(z) in a Taylor series off the real axis. 

F(x0+ih)=F(x0)+i.hF’(x0)−h2F’’(x0)/2! – ih3F(3)/3!+... 
 

Take the imaginary part of both sides and divide by h 

. F’(x0)=Im(F(x0+ih))/h+O(h2) 

Armed with the 41Z arsenal of functions it’s very likely that your real function can be programmed as 
an equation in the complex variable too. Then all it takes is to calculate the value of said complex 

function in a complex point close to the real argument x0, offset by a very small amount in the 

imaginary axisih.The program expects the program name in ALPHA and the values of h and x0 in the 

Y,X stack registers, and it returns the real derivative value in X. it uses data registers R00 to R02. 
 

01  LBL "ZNWT" 

02   ASTO 02 

03   ZSTO (00) 
04   LBL 00 

05   FS? 10 

06   VIEW 00 
07   ZRCL  (00) 

08   XEQ IND 02 
09   X<>Y 

10   / 
11   RCL 01 

12   * 
13   ST- 00 

14   RND 

15   X#0? 
16   GTO 00 

17   RCL 00 
18   END 

 

What’s remarkable is that with just one execution of the complex function we calculate both the real 
function’s value (the real part) and its derivative (the imaginary part with correction) at the same 

time. Note also the clever use of complex data register C00 to store  z0 = x0 +ih, and then how it 
keeps calculating the complex function value until two successive iterations are equal for the current 

FIX selected in the calculator. 
 

Something’s remarkable when the root-finding routine is almost shorter than the equation use to 

program the function! 
 

 
Time for some examples. The first one just a simple polynomial to try our hand with the new method, 

taken from the MoHPC forum: https://www.hpmuseum.org/forum/thread-6667.html 

 
 

https://www.hpmuseum.org/forum/thread-6667.html
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Calculate the three roots of the third degree polynomial: x³–x²–x+0,5 = 0 
 
We program the equation as shown below: 
 

01LBL “Z3” 
02  Z^3 

03  LASTZ 
04  Z^2 

05  Z+ 

06  Z- 
07  .5 

08  + 
09  END 

 

And type: 

ALPHA, “Z1”, ALPHA 
,01, ENTER^, 0, XEQ “ZNWT”  =>   0.40301587 

.01, ENTER^, 2, XEQ “ZNWT”  =>  1.45174468 

.01, ENTER^, -2, XEQ “ZNWT“  =>  -0.85476055 

 

 
And then a more elaborate example adapted from the seminal reference: 

https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/ 
 

The blog uses the function F(x) given below, which does not have any real roots: 

 
For our purposes let’s calculate the roots of, say g(x) = F(x) –  

 

 
1. LBL “Z2” 

2. ZEXP 
3. LASTZ 

4. ZSIN 

5. LASTZ 
6. ZCOS 

7. 3 
8. Z^X 

9. Z<>W 

10. 3 
11. Z^X  

12. Z+ 
13. Z/ 

14. PI 
15. - 

16. END  

 

 

 
And type: 

 
ALPHA, “Z2”, ALPHA 

,01, ENTER^, 1, XEQ “ZNWT”  =>  0.79830245 

 

https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
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12.4  Successive Approximations Method.  {  ZSAM  } 

 
 

The next application uses the successive approximation method to obtain the roots of a system of n 

non-linear equations, provided that the equations can be written as an explicit form of each variable. 
This is usually doable, but not always possible, and even when it is the method is slow – but should 

be a reliable approach provided that sensible initial guesses are provided.  
 

The program includes data entry and results output routines, i.e. a classic “driver” structure for 

additional convenience. The core routine is adapted from JM Baillard’s FNZ posted at :  
http://hp41programs.yolasite.com/approx.php  
 
Some modifications to the original core routine FNZ were required to adjust the register mapping to 

the 41Z convention. Using native 41Z functions also resulted in a code reduction, which is always a 
good thing. 

 

Example. Let’s solve the system of the two equations below: 
 

z1 = ( z1^2 - z2 )^1/3 ,  
z2 = ( z2^2 - z1 )^1/4 

 

Programmed as follows: 
 
01  LBL "Z1="    11  LBL "Z2=" 

02  ZRCL 01      12  ZRCL 02 

03  Z^2          13  Z^2 

04  ZRCL 02      14  ZRCL 01 

05  Z-           15  Z- 

06  3            16  4 

07  Z^1/X        17  Z^1/X 

08  RTN          18  END 

 

Using (1+i) as initial guesses for both z1 and z2, the results are obtained in a few seconds on the 

41-CL, or with an emulator in Turbo mode. 

 
z1 = R02 + i R03 = 1.038322757 + 0.715596476 i 

z2 = R04 + i R05 = 1.041713085 -  0.462002405 i 
 

 
The program listing is provided below. 

 

LBL "ZSAM" 

SIZE? 

"N=?" 
PROMPT 

STO 00 

3 
* 

E 
+ 

X>Y? 
PSIZE 

XEQ 00 

RCL 00 
E3/E+ 

ZINPT 

*LBL 01 
VIEW 02 

CLA 
RCL 00 

ST+ X 

STO M 
*LBL 02 

RCL 00 
ST+ X 

E 
+ 

RCL M 

+ 
RCL IND X 

RDN 

XEQ IND T 
ZENTER^ 

ZRCL IND M 
Z- 

ZMOD 

ST+ N(6) 
DSE M(5) 

GTO 02 
X<>N 

E-8 
RCL 00 

* 

X<Y? 
GTO 01 

RCL 00 

E3/E+ 
ZOUPT 

RTN 
LBL 00 

RCL 00 

ST+ X 
2.1 

+ 
STO 02 

RCL 00 
E3/E+ 

STO 01 

AON 
CF 23 

*LBL 05 

"F#" 
ARCLI 01 

" |-? " 
ARCL IND 02 

STOP 

FS?C 23 
ASTO IND 02 

ISG 02 
ISG 01 

GTO 05 
AOFF 

END 

 

http://hp41programs.yolasite.com/approx.php


(c) Ángel M. Martin – May 2021 

 

41Z Deluxe User Manual Page 82 of  124 
 

Comments. 
 
E3/E+ is a shortcut for the sequence { 1E3, /, 1, +} and ARCLI 01 is the short form for { CF 29, FIX 0, 

ARCL 01, FIX 3 SF 29 } – or other combination using functions like AIP, ARCLI, or AINT. 
 

Note how ZRCL is happy using indirect stack arguments – written as non-merged program steps, which 

are automatically added by the function itself when entered in the program. 
 

Because registers M and N are used, the execution should not be done using the single-step – as that 
will overwrite these registers with the intermediate results of the complex functions (which is not done 

in running mode). 
 

Note that to call the respective equations, we first get the global label name in the X-register using the 

RCL IND X step; then do RDN and XEQ IND T. Could we have used XEQ IND X directly?  It turns out not 
really, because surely the equation routines will use the complex Z-Stack, and that will complain if the 

current content of the {X,Y} registers cis Alpha data. There’s no real reason for this behavior, sunt so 
far that’s how the omplex buffer reacts – thus the work-around using the T register for the call. 

 
See below the graphics of both functions (real and imaginary parts). The solution of the system would 

represent where both real parts and both imaginary parts intersect. 
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12.5  Function Derivatives.  {   ZDERV   }  (by Greg McClure) 

 
The ZDERV function calculates the 1st and 2nd derivatives of a global function defined by the user 
(and thus visible via Catalog 1).  The function needs to be continuous thru the range around the value 

at which the derivatives of the function are desired.  The program uses data registers {R00-R08} as 
follows:  

 

• ZR00 (R00/R01) is the summing register for the first derivative partials calculated each pass.  
It should be left alone (read only). 

 

• ZR01 (R02/R03) is the summing register for the second derivative partials calculated each 

pass.  It should be left alone (read only). 
 

• ZR02 (R04/R05) is the current Z for calculation by routine pointed to by alpha for XEQA.  It 

was initialized to the value entered by the user in X, Y (and also in complex Z).  It is  
modified by ZDERV each step, so it is the next value for the user routine when called.  It is 

up to the user program to decide when to use the value (it is not required to be saved by the 

user if not needed at the beginning of the user program this way).  It should be considered 
read only. 

 

• ZR03 (R06/R07) is the complex step size ZS entered by the user in complex stack level W.  It 
should be left alone (read only). 

 

• R08 is initialized to 0 and contains the current step number (0 to 10).  It is used by the logic 
to know when to go from Z+5*StepSize to Z-5*StepSize (right after handling step #5) and 

when to stop (right after step#9, when it increments to 10).  So, for example, if  z = 1+0i 

and ZS = 0.3+0i, the sampling will be: 1, 1.03, 1.06, 1.09, 1.12, 1.15, 0.85, 0.88, 0.91, 0.94, 
0.97 (each wit h +0i) for the 10 points.  Again it should be left alone (read only). 

 

• So any of registers R00 thru R08 shouldn’t be disturbed by the user program.  As long as the 
user program name is 6 or less characters, it can be ASTO’d / ARCL’d by the program if 

required.  The user program can use ANY of the stack registers and any of the complex stack 

registers, as long as the final result ends up in X,Y.  Never mind that it is duplicated in 
complex Z, as it should be there if followed 41Z protocol for the program. 

 

• Note that if the FOCAL user program contains high-level math complex functions (such as 
ZGAMMA) then its LBL name should also be stored in a separate data register, say R09. This 

is needed because the more complex functions make internal usage of the ALPHA registers, 

which therefore would be compromised. Should that occur you’re likely to get a 
“NONEXISTENT” error message when attempting the execute the user program from within 

ZDERV. 
 

Besides the user function name in ALPHA, the program takes two input values, both of them complex: 
the point where the derivatives are to be evaluated, and the complex step size to use for the 

derivative evaluation formula (this is a measure of the distance between points sampled).  When 

developing this program, many formulas were available to use… this program uses the 10-point 
formulas developed by Jean-Marc Baillard.   

 
The formulas used are exact for any complex polynomial of degree < 11 : -  f(x+k.h) is denoted fk to 

simplify these expressions - 

 

df/dx = (1/2520.h).[ 2100.( f1 - f-1 ) - 600.( f2 - f-2 ) + 150.( f3 - f-3 ) - 25.( f4 - f-4 ) + 

+ 2.( f5 - f-5 ) ] + O(h10)  

 

d2f/dx2 = (1/25200.h2).[ -73766 f0 + 42000.( f1 + f-1 ) - 6000.( f2 + f-2 ) + 1000.( f3 + f-3 

)  
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 - 125.( f4 + f-4 ) + 8.( f5 + f-5 ) ] + O(h10) 
The implementation of ZDERV also makes use of a hidden function, ZDRTN.  It is NOT designed to 

be used in the user function created, which only need RTN or END to terminate the FOCAL code that 
defines them.  Why then is XQRTN needed? The operating system normally does not allow returning 

to MCODE from FOCAL programs.  So to overcome this restriction ZDERV jumps to a mini-FOCAL 
program that contains ZDRTN to execute the user function and return back to the ZDERV MCODE 

after doing a real RTN.  

 

All this is transparent to the user, who needs only to provide the function name in ALPHA and the 
input values in the W- and Z- complex stack levels as described above. The execution ends with the 

fisrt derivative value in both complex stack level Z and ZR00, and the second derivative value in both 
complex stack W and ZR01. 

 

Example 1. Derivatives of SIN 

 
Let’s say we want to find the derivative of f(z) = sin(z) at z=1.  First we need to create a Global label 

program to define the function (as it cannot use mainframe function names). Note that there’s no 
need to preserve the routine name in R09 as ZSIN does not use the ALPHA registers internally. 

 

01  LBL “SINZ” 
02  ZSIN 

03  END 
 

Let’s try a step value of .03 (so the points sampled will be (.85, .88, .91, …, 1.12, 1.15).   

 
Type: 0, ENTER^, .03, ZENTER^  =>  0.030+j0 

0, ENTER^, 1,  XEQ “ZDERV_ “SINZ”  ALPHA  =>  “RUNNING...“    

 
On return, both ZR00 and Z contain 0.540302302 (the actual 1st. derivative is 0.54032306) and ZR01 

and W contains -0.841470900 (the actual 2nd derivative is -0.841470985).   
 

Testing the sine function for other values and step sizes is easy if you use the explicit derivatives, 

f’(sin(z)) = cos(z), and f’’(cos(z)) = -sin(z), that is to say, you can test the values obtained by this 
program for this example by taking the cos(z) and –sin(z) for the actual 1st and 2nd derivative values. 

 
 

Example 2.-   Calculate f '(1+i) & f "(1+i) for:  f(z) = exp(-z^2)    
 

We program the function using any global LBL , 6 characters or less 

 
01  LBL "EX2"            

02  Z^2 
03  ZNEG 

04  ZEXP 

05  END                
 

If we choose h = 0.03(1+i) as step-size we type: 
 

0.03, ENTER^,  ZENTER^   =>   0.003(1+j) 

1, ENTER^, 1,  XEQ “ZDERV_ “EX2”  ALPHA   =>  “RUNNING...“ 

 

f '(1+i) = -0.986301184 + j2.650888353;  and  Z<>W 

f "(1+i) = 8.106657849 - j1.510648148 ;    

 
Choosing the best h-value is not easy but h ~ 0.03 (in both axis) "often" produces good results. Be 

aware that unfortunately the better step-size for the first derivative may not be a good one for the 
second, and vice-versa. 
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Example 3. Cubic Polynomial Derivatives. 

 
With the following coefficients stored in ZR06-ZR09 (i.e. R12-R19), calculate the derivatives in z=1+j 

of the cubic polynomial. Use Zstep=0.1+0.1j. The results should be -3+j17 and 4+j16 for the 1st and 
2nd derivatives respectivey, as calculated by ZDP1 and ZPD2. 

 

ZR06 = 1+j -  third degree coeff. 
ZR07 = 2+2j -  second degree coeff. 

ZR08 = 3+3j -  first degree coeff. 
ZR09 = 4+4j -  independent term. 

 
We start by programming the function under the user label “ZP69”, taking advantage of the ZPL 

function to do the polynomial evaluation. Note that this uses the ALPHA register M internally for 

scratch, thus we need to preserve the global program name in another data register and restore it 
after the evaluation is done.  We’ll use R09 for this purpose. Note as well that the usage of storate 

registers must be compatible with ZDERV requirements, which uses ZR00 to ZR03 
 

01  LBL “ZP69” 

02  ASTO 09    LBL name preserved 
03  ZRCL 02    initial argument 
04  NOP    to separate numeric steps 
05  6.009    control word 
06  ZPL     evaluates polyn 

07  CLA     clear scratch 
08  ARCL 09    routine LBL restored 

09  END 
 

Then we enter the function parameters as usual: 
 

0.1, ENTER, ZENTER^,    =>  0.100(1+J) 

1, ENTER^, 1,  XEQ “ZDERV_ “ZP69”  ALPHA   =>  “RUNNING...“ 

 
Which shortly returns with the exact solutions in the complex stack:  -3+J17;    Z<>W   4+J16 

 
 
Example 4. Derivatives of Gamma function. 

 
Let’s now do a high-level math example using ZGAMMA, which also messes with the ALPHA registers 

thus we need to save the global label in R09 in this case as well.  Let’s calculate the derivatives in the 
point  z0 = 1+i, also using a step size  zh = 0.1 (1+j) 

 

01  LBL “GAM” 
02  ASTO 09 

03  ZGAMMA 
04  CLA 

05  ARCL 09 

06  END 
 

0.1, ENTER^, ZENTER^,    =>   0.100(1+J) 

1, ENTER^,  XEQ “ZDERV_ “GAM”  ALPHA   =>   0.2140+J0.5215 

Z<>W      =>  -0.4338-J0.1875 

 
The first derivative should equal ZPSI * ZGAMMA, and it does!,  

 

1, ENTER^, ZGAMMA,  ZSTO 02,  LASTZ,  ZPSI, ZRC* 02 =>  0.2140+J0.5215 
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Which can also be verified using WolframAlpha, see: 

http://www.wolframalpha.com/input/?i=gamma%281%2Bi%29*digamma%281%2Bi%29 

 
 
And similarly for the second derivative using the tri-gamma function: 

http://www.wolframalpha.com/input/?i=gamma%281%2Bi%29*%28trigamma%281%2Bi%29+%2B
%28digamma%281%2Bi%29%29^2%29 

 
 
Example 5: Halley’s Method. 
 

This example clearly illustrates the usefulness of ZDERV – applied to the Halley’s method to obtain 

the roots of a function. Contrary to the secant algorithm, the Halley’s method only needs one initial 
estimation, and the convergence is meant to be faster - reducing so the execution time. 

 
The following FOCAL program lists the code (set FIX as needed for precision): 

 
01 LBL “ZHALL 
02 “FNAME?” 
03 AON 
04 PROMPT 
05 ASTO 09 
06 AOFF 
07 “Z0=”?” 
08 PROMPT 
09 ZSTO 02 
10 .1 
11 ENTER^ 
12 ZSTO 03 
13 LBL 00 
14 CLA 

15 ARCL 09 
16 ZRCL 03 
17 ZRCL 02 
18 ZDERV 
19 ZRCL 02 
20 XEQ IND 09 
21 ZRPL^ 
22 ZRC* (00) 
23 ZDBL 
24 ZRCL (00) 
25 Z^2 
26 ZDBL 
27 ZRCL 01 
28 ZRUP 

29 Z* 
30 Z- 
31 Z/ 
32 ZNEG 
33 ZRC+ 02 
34 ZENTER^ 
35 Z<> 02 
36 Z=WR? 
37 GTO 01 
38 GTO 00 
39 LBL 01 
40 ZAVIEW 
41 END 

http://www.wolframalpha.com/input/?i=gamma%281%2Bi%29*digamma%281%2Bi%29
http://www.wolframalpha.com/input/?i=gamma%281%2Bi%29*%28trigamma%281%2Bi%29+%2B%28digamma%281%2Bi%29%29%5e2%29
http://www.wolframalpha.com/input/?i=gamma%281%2Bi%29*%28trigamma%281%2Bi%29+%2B%28digamma%281%2Bi%29%29%5e2%29
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12.6  Continued Fractions.  {   ZCF2V   }  (by Greg McClure) 

 

Continued Fractions are expressions of the form: 
  

 
 
The use of + in the denominator indicates that the remainder of the terms actually are part of that 

denominator.  So the above expression means B(0) + A(1) / [B(1) + A(2) / [B(2) + A(3) / [… ]]].   

 
This can be mathematically abbreviated as B(0) + [A(1), A(2), A(3), … ; B(1), B(2), B(3), …] which will 

be used here.  The number of expressions may or may not be infinite. 
 

Many values are easily expressed as continued fractions.  Some examples are: 

 
Tanh(x) = [X, X^2, X^2, X^2, … ; 1, 3, 5, 7, …] 

Pi = [4, 1^2, 3^2, 5^2, 7^2, … ; 1, 2, 2, 2, 2, …] (one of MANY representations of Pi) 
1 / (e-1) = [1, 2, 3, 4, … ; 1, 2, 3, 4, …] (again one of MANY representations of e) 

 
 

The simpler form of continued fractions often used are expressions with A(n)=1, therefore of the form:    
B(0)+1/(B(1)+)  1/(B(2)+)… 1/(B(n)+)…   mathematically abbreviated as:  [B(0); B(1), B(2), B(3), …].  

For example:  e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, …] 

 
The ZCF2V function is designed to calculate a complex continued fraction value.  It requires a user 

created subroutine that calculates A(n) and B(n) for n >= 1.  The function assumes z is available in 
ZR01 and n available in R12 for this program, and should leave A(n) in complex stack level “Z” and 

B(n) in complex stack level “W” on completion of the user subroutine.  The subroutine must be callable 

by a global label (of up to 7 characters).  The program uses R00 thru R12. 
 

To execute ZCF2V, put the value of B(0) in complex stack level “W”, and the value of evaluation point 
z in complex stack level “Z”.  Execute ZCF2V  to evaluate the continued fraction - which will prompt for 

the name of the routine that calculates both A(N) and B(N) and will write it into the alpha register to 
evaluate the continued fraction.  In a program execution (no prompting) you need to enter the user 

program name in ALPHA prior to the ZCF2V step. 

 
Here is an example of use of ZCF2V.  Let’s say we want to evaluate the Tanh function mentioned 

above.  We would create the following program in memory (assume we use the label TT): 
 

01  LBL “ZTH”     11  LBL 01    

02  RCL 12 ; get n from R12   09  -  ; (n–1) in X 
03  1  ; Is it 1?    10  RCL 12 ; get n again 
04  X#Y?     11  +  ; (2n–1) in X 
05  GTO 01 ; No, skip to LBL 01  12  0 
06  CLX      13  X<>Y ; make it complex 
07  X<>Y ; make it complex  14  ZRCL 01 
09  ZRCL 01 ; B(1) = 1+j0 in “W”,  15  Z^2  ; B(n) = (2n – 1)+j0 in “W”,  
10  RTN  ; A(1) = z in “Z”   16  END  ; A(n) = z^2 in “Z” 

 
To evaluate Tanh(1) with B(0)=0 enter the following: 

 

0 , ENTER^, ZENTER^,  ENTER^, 1,  ZCF2V_ “ZTH ALPHA.  -> “RUNNING…” 

 

The answer of 0.761594156 (assuming FIX 9) is displayed in a few seconds.  The value returned should 
be accurate to at least 9 significant digits.   
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Try now to evaluate Tanh(1+i), which answer is 1.083923328 + j 0.271752586: 

 

[ Z ] 0, ZENTER^, 1, ENTER^,  XEQ “ZCF2V_”ZTH  ALPHA  => 

 RUNNING...“, => 1.0839+J0.2718 

 

 

Example 2.    If  f(z)  is defined by:    b0 = 0.2 + 0.3 i  ;   an = 2.z + n  ,  bn =  z2 + n2  ( n > 0 )  ;    
evaluate  f(1+2.i).  We program the function components as follows: 

 
01 LBL “FZ” 

02 ZRCL 01 

03 Z^2 
04 RCL 12 

05 X^2 
06 + 

07 ZRCL 01 

08 2 

09 ST* Z 

10 * 
11 RCL 12 

12 + 
13 END 

 

Calculated as:  

 
0.3, ENTER^, 0.2,  ZENTER^, 2, ENTER^, 1, XEQ “ZCF2V_”FZ” =>  1.0846-J0.7498 

 
 
Register usage for ZCF2V. 
 

First, name of function must be in Alpha (up to 7 chars allowed).  The prompting makes that easy for 
keyboard usage! 

 
Like it was the case for ZDERV, the user program name must be in the ALPHA register each time the 
function is to be evaluated.  If the user program contains functions that alter the contents of ALPHA 

then you’ll need to restore said user program name as part of the user program itself. Typically you 
save it on entry (say in an available data register like R15) and restore it upon completion of the 

continued fraction. 

 
• Register ZR00 is the continuing estimate of F(N) and hopefully gets closer and closer to the 

real solution (or we wind up with an infinite loop).  It should be considered read only. 

 

• Register ZR01 is the saved value of z.  The user program that calculates the next A(N) and 
B(N) terms can use this value.  It should be considered read only. 

 

• Register ZR02 is C(N) from the modified Lentz formula.  It should be considered read only. 

 

• Register ZR03 is D(N) from the modified Lentz formula.  It should be considered read only. 
 

• Register ZR04 is A(N) saved from the user program.  It can be reused by the user program but 

will be replaced on reentry to the ZCF2V calculation loop. 
 

• Register ZR05 is B(N) saved from the user program.  It can be reused by the user program but 

will be replaced on reentry to the ZCF2V calculation loop. 
 

• Register R12 is the current loop count (N).  The user program that calculates the next A(N) and 

B(N) terms can use this value.  It should be considered read only. 

  
If an infinite loop is occurring, pressing R/S should stop the program on the next entry to the user 

program.  If no infinite loop is occurring, the answer should eventually show up in X,Y (Complex Z). 
 



(c) Ángel M. Martin – May 2021 

 

41Z Deluxe User Manual Page 89 of  124 
 

Example 2. Bessel Functions Jn(x) and Yn(x).  {  JYNX  } 

 
This example showcases the use of continued fractions to calculate the Bessel functions of first and 

second kinds, Jn(x) and Yn(x), for real values of order and argument. It is a very interesting application 

that has the benefit to avoid the limitations of the direct methods when the order and/or argument are 
large. Therefore, unlike unlike the counterpart functions in the SandMath, the following program 

produces accurate results for large arguments.  
 

You should note that this approach involves solving two continued fractions, one in the complex 
domain and another in the real domain – therefore both the 41Z and SandMath modules need to be 

plugged in the calculator.  

 
Formulae: 

 
Let ZCF be the complex continued fraction defined by: 

 

ZCF = [ ( 0.5^2 – n^2 )/( 2x + 2i + ( 1.5^2 – n^2 )/( 2x + 4i + ..... ) ) ]  
 

And CF be the real continued fraction defined by: 
 

CF=  -1/(((2n + 2)/x) - 1/(((2n + 4)/x) - ..... ))  
D = denominator of CF 

 

Let:  p + i.q = -1/(2x) + i .[ 1 + (1/x) [ZCF] } 
And: s = ( p - CF - n/x ) 

   
then we have the following expressions: 

 

Jn(x)  =  sign(D). sqrt[ (2q/(.x) / (( q^2 + s^2 )]      

Yn(x) =  [ s / q ] . Jn(x) 
 

 
Numeric application: 

 

10   ENTER^  XEQ "JYNX"    => J10(10) =  0.207486107    
X<>Y     Y10(10) =  -0.359814151    ( in 2mn27s )  

 
3.14,  ENTER^, 100,  XEQ "JYNX"  => J3.14(100) =  0.079535723      

X<>Y     Y3.14(100) =  0.006582327    ( in 4mn14s )  

 
The method doesn't work if n is a negative integer. However in that case, if n < 0 we can use the 

relations   
                  Jn = J-n cos n.Pi + Y-n sin n.Pi  , and   

                  Yn = -J-n sin n.Pi + Y-n cos n.Pi 
 

If x < 0 the results are generally complex and won’t be properly calculated by this program. 

 

 

Data Register Usage. 
 

“JYNX” needs data registers R00 to R13. {R00 - R12} are used by ZCF2V, plus one additional register 
(R13) is needed to save the value of the order “N”.   

 

Note that both ZCF2V and CF2V have slightly different conventions as to where the arguments are 
stored: in CR01 for ZCF2V, which transtaled to R02 and R03 for the real and imaginary parts. All this is 

transparent to the user for this example. 
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The Program Listing is shown below. Note the calculation for the p and q factors takes advantage of 

the complex result returned by ZCFV, transposing the real and imaginary parts as per the multiplication 
by “ï” in the definition formulae: 

 

p = -1/x . [ 1/2 + Im(ZCF)] 
q = [ 1 + Re(ZCF/x) ] 

 
Credits: The original program was written by Jean-Marc Bailalrd, and has been adapted to use the 

MCODE implementations of the continued fractions routines. Thanks also to Greg McClure for his 

assistance provided for the adaptation. 
 

 

01 LBL “JYNX” 

02 STO 01  x 
03 X<>Y   

04 STO 13  N 

05 “ZCF” 
06 CLST 

07 ZENTER^ 
08 0 

09 RCL 01   

10 ZCF2V   
11 RCL 02  x 

12 STO 01  
13 ST/ Z 

14 / 

15 E 
16 + 

17 STO 10  q 
18 X<>Y 

19 CHS 
20 RCL 01  x 

21 ST+ X 

22 1/X 
23 – 

24 STO 09  p 
25 “CF” 
26 0 

27 RCL 01  x 
28 CF2V     

29 CHS 

30 RCL 09  p 

31 + 
32 RCL 13  N 

33 RCL 01  x 

34 / 
35 – 

36 STO 11  s 
37 RCL 10  q 

38 R-P 

39 LASTX  q 
40 ST+ X  2q 

41 PI 
42 RCL 01  x 

43 *  .x 

44 / 

45 SQRT 
46 X<>Y 

47 / 
48 RCL 05 

49 SIGN 

50 * 
51 STO 12 

52 RCL 11  s 
53 * 

54 RCL 10 
55 / 

56 RCL 12 

57 CLD  
58 RTN 

59 LBL “ZCF” 

60 RCL 12  N 
61 ST+ X  2N 

62 RCL 02  x  

63 ST+ X  2x 
64 ZENTER^ 

65 0 
66 RCL 12  N 

67 0,5 

68 –   
69 X^2   

70 RCL 13  N 
71 X^2  N^2 

72 – 

73 RTN 

74 LBL “CF” 

75 X<>Y 
76 STO 05  Bn 

77 X<>Y 
78 RCL 02  n 

79 RCL 13  N 

80 + 
81 ST+ X 

82 RCL 01  x 
83 / 

84 -1 

85 END 

 

 
Note that this program is not available in the 41Z Module, but it has been included in the 

“Advantage_Math” ROM, a collection of applications using the advanced modules like the 41Z, 

SandMath and SandMatrix, sometimes used together . 
 

Bessel functions for complex variable are covered in the next sections of the manual. 
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12.7  Bessel and Hankel functions. 
 
This section represents an interesting “tour de force” within the 41Z module – taking the humble 41 
system to the realm of true high-level math. Use it or leave it, it’s all a matter of choice – but 

programming techniques and valid algorithms are always interesting, despite its obvious speed 
shortcomings. 

 
Index Function Description  

1 ZJBS Complex Bessel J function First kind 

2 ZIBS Complex Bessel I function First kind 

3 ZKBS Complex Bessel K function Second kind 

4 ZYBS Complex Bessel Y function Second kind 

5 EIZ/IZ Spherical Hankel first kind order zero SHK1 (0, z) 

6 ZSHK1 Spherical Hankel first kind SHK1 (n, z) 

7 ZSHK2 Spherical Hankel second kind SHK2 (n, z) 

8 ZANGJ Anger Function J (n, z); n real 

9 ZWEBE Weber Function W (n, z); n real 

 
See the paper “Bessel functions on the 41 with the SandMath Module” by the author, for an extensive 

description of the (real-number) Bessel Functions on the 41 system. In fact, following the “do it as it’s 
done with real numbers” standard philosophy of the 41Z module, the complex versions of these 

programs are very similar to those real-number counterparts described in said paper. 

 
The formulae used are as follows: 

 
J(n,z) =  {Uk  | k=1,2,….} * (z/2)n / (n+1) 
U(k) = -U(k-1) * (z/2)2 / k(k+n) 
U(0) = 1 

 
Yn(x) = [ Jn(x) cos(n)) - J-n(x) ] / sin(n))  

Kn(x) = (/2) [ I-n(x) - In(x) ) / sin(n)) ] 
n # .... -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 .. 

 
 
Like for the real arguments case, there is one auxiliary functions ZBS#, used to perform intermediate 
calculations needed by the main programs: ZJBS, ZIBS (first kind), and ZYBS, ZKBS (second kind). 

Other auxiliary functions are: 
 

• ZGEU    Euler’s gamma constant as a complex number,  and  

• HARMN  to obtain the harmonic number of a given integer: (uses “-ZSTACK”) 

 

H(n) =  [1/k] |k=1,2…n  (*) 

 
The expressions used to calculate the results are different for integer orders (remember the 
singularities of Gamma), requiring special branches of the main routines. For that reason two other 

functions have been added to the 41Z as follows: 
 

• ZINT?  to determine integer condition, and  

• ZCHSX  to simplify calculation of z*(-1)^k 

 

Both the function order and the argument are complex numbers, which are expected to be on complex 
stack levels W (order) and Z (argument) prior to the execution of the function. The result is placed on 

the Z-level complex stack. 
 

Below are the program listings for each particular case.- 
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a) Bessel Functions of the first kind.   Uses R00 – R08. Uses Flags 0-1 
 

1 LBL ZJBS 48 Z* n

2 CF 00 49 ZRCL 00 n

3 GTO 00 50 RCL M k

4 LBL ZIBS 51 + n+k

5 SF 00 52 LASTX k

8 LBL 00 53 ST* Z k(n+k)

8 CF 01 54 *

8 Z<>W 55 Z/

9 ZINT? is n integer? 56 ZSTO  02 U(k)

10 XEQ 05 57 ZRCL  03 SUM(k-1)

11 Z<>W 58 Z+ SUM(k)

12 ZHALF z/2 59 ZENTER^

13 XROM "ZBS" 60 Z<>  03 SUM(k-1)

14 FS? 01 n integer 61 Z=W?

15 RCL 01 62 GTO 01

16 FS? 01 63 E

17 ZCHSX J(-n, z) = (-1)^n J(n, z) 64 ST+ M k=k+1

18 LBL 04 65 GTO 02

19 ZAVIEW 66 LBL 01

20 RTN 67 ZRCL 00 n

21 LBL 05 68 INCX (n+1)

22 X<0? n<0? 69 CF 02

23 SF 01 70 X<0?

24 ABS 71 SF 02

25 RTN 72 X<0?

26 LBL "ZBS" 73 ZNEG  -z

27 Z#0? 74 ZGAMMA

28 GTO 00 75 FC? 02

29 Z=W? 76 GTO 00

30 E 77 LASTZ  -z

31 GTO 04 78 ZGNGZ

32 LBL 00 79 Z<>W

33  -ZSTACK running… 80 Z/

34 ZSTO  01 (z/2) 81 LBL 00

35 Z<>W n 82 Z/

36 ZSTO 00 n 83 ZRCL 01 (z/2) 

37 E 1 84 ZRCL 00 n

38 ZREAL 1+J0 85 W^Z (z/2)^n

39 ZSTO 02 1+J0 86 Z*

40 ZSTO 03 1+J0 87 END

41 STO M k=1

42 LBL 02 CR00 - n

43 ZRCL 01 CR01 - Z/2

44 Z^2 (z/2)^2 CR02 - Uk

45 ZRCL 02 Uk-1 CR03 - SUM

46 FC? 00 CR04 - result

47 ZNEG  
 
 
Examples:-  Calculate JBS(1+i, -1-i) and IBS(-0.5+i; 1-0,5i) 

 
1, ENTER^, ZENTER^, ZNEG, ZJBS     --> -8,889 + j 2,295 

1, ENTER^, 0,5, CHS, ZENTER^, ENTER^, 1, ZIBS   -->   3,421 + j 1,178 
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b) Bessel functions of the second kind. Uses R00 – R08. Uses flags 0-2 

 
1 LBL "ZB1" SUM{f(n,x)} 1 LBL "ZB2" SUM{g(n,x)}

2 CLZ 2 CLZ

3 ZSTO 02 Jn / In 3 ZSTO 03 reset partial SUM

4 ZSTO 04 SUM 4 RCL 00 ABS(n)

5 STO 01 k=0 5 X=0? n=0?

6 LBL 02 6 RTN skip it

7 XEQ 10 summing term 7 DECX

8 Z=0? x=0? 8 E3

9 GTO 01 ignore term 9  / 0,00(n-1)

10 ZRCL 04 S(k-1) 10 STO 08

11 Z+ S(k) 11 LBL 05

12 ZENTER^ 12 ZRCL 01 x/2

13 Z<> 04 13 RCL 08 k,00(n-1)

14 Z=W? are they equal? 14 INT

15 RTN Final result(s) 15 STO 01 k 

16 LBL 01 16 ST+ X 2k

17 E increase index 17 RCL 00 n

18 ST+ 01 k=k+1 18 - 2k-n

19 GTO 02 19 Z^X (x/2)^(2k-n)

20 LBL 10 Function to Sum 20 RCL 00 n 

21 ZRCL 01 x/2 21 RCL 01 k

22 RCL 01 k 22 - n-k

23 ST+ X 2k 23 DECX n-k-1

24 RCL 00 n 24 FACT (n-k-1)!

25 + 2k+n 25 RCL 01 k

26 Z^X (x/2)^(2k+n) 26 FACT k!

27 ZENTER^ 27  / (n-k-1)! / K!

28 RCL 01 k 28 ST* Z

29 FACT k! 29 * [**]

30 LASTX k 30 FC? 00 is it Yn?

31 RCL 00 n 31 GTO 00

32 + k+n 32 RCL 01 k

33 FACT (k+n)! 33 ZCHSX (-1)^k * term

34 * k! * (k+n)! 34 LBL 00

35 ZREAL 35 ZRCL 03

36 Z/ k-th. Term 36 Z+

37 FS? 00 is it Kn? 37 ZSTO 03

38 GTO 00 38 ISG 08

39 RCL 01 k 39 GTO 05 (k+1),00(n-1)

40 ZCHSX [term] * (-1)^k 40 ZRCL 03

41 LBL 00 41 FC? 00 i s  i t Yn?

42 Z<> 02 ZST+ 02 42 RTN

43 ZRCL 02 43 RCL 00 n

44 Z+ f(k) + SUM(k-1) 44 ZCHSX SUM*(-1)^n

45 Z<> 02 Jn / In 45 END

46 ZENTER^

47 RCL 01 k

48 HARMN H(k)

49 LASTX k Note: functions DECX and INCX

50 RCL 00 n can be replaced by standard

51 + k+n FOCAL sequences:

52 HARMN H(k+n)

53 + H(k)+H(k+n) DECX = 1,  -

54 ZREAL INCX = 1, +

55 Z*

56 END  
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1 LBL "ZYBS" Integer Index 48 LBL 05 integer orders

2 CF 00 49 CF 01

3 GTO 00 50 X<0? negative

4 LBL "ZKBS" 51 SF 01

5 SF 00 52 ABS

6 LBL 00 53 STO 00 n

7 ZHALF 54 XROM "ZB2"

8 ZSTO 01 (z/2) 55 ZNEG -[SUM*(-1)^n]

9 Z<>W n 56 ZSTO 03

10 ZINT? 57 XROM "ZB1" to obtain both!

11 GTO 05 58 ZRCL 03

12 Z<>W ZNEG 59 Z<>W

13 XROM  "ZBS" Z<>W 60 Z-

14 ZSTO 02 Jn / In XROM  "ZBS" J-n (z) 61 ZRCL 01 x/2

15 FS? 00 FS? 00 62 ZLN Ln(x/2)

16 GTO 00 ZNEG  -J-n(z) 63 GEU g

17 ZRCL 00 ZSTO 04 64 + g+Ln(x/2)

18 PI ZRCL  00  -n 65 ZRCL 02 J(n,x) or I(n,x)

19 ST* Z ZNEG n 66 Z* [ }*J/I(n,x)

20 * ZRCL 01 (z/2) 67 ZDBL

21 ZCOS XROM " ZBS" 68 Z+ K(n,x)/Y(n,x)

22 Z* ZSTO 02 Jn / In 69 FC? 00 i s  i t Yn?

23 LBL 00 FS? 00 70 GTO 04 FINAL STEPS

24 ZSTO 04 GTO 00 71 RCL 00 n

25 ZRCL  00 n ZRCL 00 72 INCX (n+1)

26 ZNEG  -n PI 73 ZCHSX K(n,x)* (-1)^(n+1)

27 ZRCL 01 (z/2) ST* Z 74 ZHALF

28 XROM " ZBS" * 75 GTO 03 Exit

29 ZRCL 04 ZCOS 76 LBL 04 Yn

30 Z<>W Z* 77 PI

31 Z- LBL 00 78 ST/ Z

32 ZRCL 00  -n ZRCL 04 79 /

33 ZNEG n Z+ 80 FC? 01 negative index?

34 PI ZRCL 00 n 81 GTO 03 Exit

35 ST* Z PI 82 RCL 00 n

36 * ST* Z 83 ZCHSX

37 ZSIN * 84 LBL 03

38 Z/ ZSIN 85 ZSTO 03

39 FC? 00 Z/ 86 ZAVIEW

40 GTO 03 Exit FC? 00 87 END

41 PI GTO 03 Exit

42 2 PI

43 / 2

44 CHS /

45 ST* Z ST* Z

46 * *

47 LBL 03 Exit LBL 03 Exit  

 
The formulae used for integer orders are as follows: 

 

 Yn(x) = 2[γ + Ln x/2] Jn(x) –  (-1)k fk(n,x) –  gk(n,x)  

 (-1)n+1  2 Kn(x) = 2 [γ + Ln x/2] In(x)  –  fk(n,x) –  (-1)n  (-1)k gk(n,x)  

 

gk (n,x) = (x/2)2k-n [(n-k-1)! / k!]  ; k=0,2,…(n-1)      

fk (n,x) = (x/2)2k+n [H(k) + H(n+k)] / [k! (n+k)!]  ; k=0,1,2,…..   
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Example:-  Calculate KBS (-0.5+i; 1-0,5i)  

 
1, ENTER^, 0,5, CHS, ZENTER^, ENTER^, 1, XEQ “ZKBS“  →    0,348 + j 0,104 

 

 

Example:- Calculate YBS (-1,-1) 
 

0, ENTER^, 1, CHS, ZENTER^, XEQ “ZYBS”    → - 0,781 + j 0,880 

 
This last example shows how even real arguments can yield complex results.  

 
 
Example.- Calculate JBS and IBS for (1+2i, -1-3i) 

 
2, ENTER^, 1, ZENTER^ 
3, CHS, ENTER^, 1, CHS, XEQ “ZIBS“  →  35,813 - j 191,737 

 
2, ENTER^, 1, ZENTER^ 
3, ENTER^, 1, ZNEG, XEQ “ZJBS“   → - 257,355 - j 12,633  

   
 

 

12.7.  Hankel and Spherical Hankel functions. {  ZSHK1 ,  ZSHK2 ,  EIZ/IZ  } 

 

With the Bessel functions in the pocket it takes a litte more than a trivial exercise to write a few short 
routines to calculate the Hankel and Spherical Hankel functions – both of the first and second kind. 

Their defining expressions are as follows: 

 

    ;     

 

 

 

These linear combinations are also known as Bessel functions of the third kind, and it’s just an 
association of the previous two kinds together.  Here the spherical analogues of the Hankel functions 

are based on the Spherical Bessel functions as follows:  
 

 
 
 

Example: Calculate HK1 and HK2 of zero order for z= (1+i) 
 

  [ Z ], [0] , ZENTER^, [1], ENTER^, XEQ “ZSHK1“ =>   0,055-J0,254 

  [ Z ], [0] , ZENTER^, [1], ENTER^, XEQ “ZSHK2“ =>   1,878-J0,409 

 
 

Note that fort the zero-th order SHK1 we can also use the EIZ/IZ function, which uses the direct 
exponentials formula and therefore comes to the same result in a much shorter time (shown below 

with 9 decimal digits): 

 
Re = 0,055396883;  Im = -0,254162993 
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These functions are also valid for the non-integer order cases, for example:  n= (1+ i) and z= (1+i): 

 
1, ENTER^, ZENTER^, XEQ “ZSHK1” =>  -0,434-J0,874 

 

Which has a 9-digit accuracy when compared to the Wolfram Alpha result – astonishing if you consider 
the long and winding process needed to get to their result – all done behind the scenes. 

 

 
 

The FOCAL programs below list the simple code snippets to program the regular (ZHK1 and ZHK2) 

and spherical pairs ZSHK1 and ZSHK2. Note that J is obtained during the Y calculation, thus there’s 
no need to repeat the execution for it – we retrieve its value from complex register ZR02.  Note how 

the complex stack performs a vital role in these programs – storing the intermediate results unaffected 
by the complex calculations that take place. 

 

 

01 LBL "ZSHK1" 01 LBL "ZHK1"

02 CF 03 02 SF 03

03 GTO 03 03 GTO 03

04 LBL "ZSHK2" 04 LBL "ZHK2"

05 SF 03 05 CF 03
06 LBL 03 06 LBL 03

07 Z<>W 07 ZYBS

08 ,5 08 FS? 03

09 + 09 ZNEG

10 Z<>W 10 Z*I

11 ZYBS 11 ZRCL 02 JBS

12 FS? 03 12 Z+

13 ZNEG 13 ZAVIEW

14 Z*I 14 END

15 ZRCL 02 JBS

16 Z+

17 ZRCL 01 z/2

18 4

19 ST* Z 2z

20 * 

21 ZINV

22 ZPI*

23 ZSQRT

24 Z* 

25 ZAVIEW

26 END  
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The plots below show the Spherical Hankel-1 function for orders 1 and 2, for a short range of the real 

argument x. Obviously the results are complex as well, thus the real and imaginary parts are plotted 
separately. 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

Complex Keyboard shortcuts.-  the Bessel and Hankel functions can be accessed pressing SHIFT 

when the NEXT indicator is shown, as per the following sequence: 

 
[Z], [Z], [SHIFT], [SHIFT] -> then [I], [J], for ZJBS and ZJBS or [K], [L] for ZKBS and ZYBS. 

 
 

The same group can be used to access ZWL & ZAWL (Complex Lambert and its inverse) and EIZ/IZ, 
the Spherical Hankel function of first kind and order zero h(1) (0,z) 

 

, then SHIFT:   

 
 

The key maps below summarizes all the special assignments in the [BSSL] (left) and [NEXT] (right) 

groups. Notice that the mnemonics h(1)n and h(2)n correspond to the ZSH1 and ZHS2 functions. 
Note as well the inclusion of the “alternative” versions SQRTZ, e^Z and 1/Z in the [NEXT] group – so 

you can quickly compare them with the main functions for accuracy and speed. 
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12.8.  Weber and Anger Functions.  {  ZANGJ ,  ZWEBE  } 

 

In mathematics, the Anger function, introduced by C. T. Anger (1855), is a function defined as 
 

       

 

  
 

The Weber function introduced by H. F. Weber (1879), is a closely related function defined by: 
 

       

 

 
 
The Anger and Weber functions are related by: 

 

       
 

so in particular if ν is not an integer they can be expressed as linear combinations of each other. UIf ν is 
an integer U then Anger functions Jν are the same as Bessel functions Jν, and Weber functions can be 

expressed as finite linear combinations of Struve functions (Hn and Ln). 

 
The expressions used in the 41Z module are based on the Hypergeometric function, therefore use the 

ascending series method - as follows: 

 
Jn(z) = + (z/2) sin( 90°n )  1F2( 1 ; (3-n)/2 , (3+n)/2 ; -z2/4 ) / ((3-n)/2) / ((3+n)/2)  

              + cos( 90°n ) 1F2( 1 ; (2-n)/2 , (2+n)/2 ; -z2/4 ) / ((2-n)/2) / ((2+n)/2)  

 
and: 

 

En(z) = - (z/2) cos( 90°n )  1F2( 1 ; (3-n)/2 , (3+n)/2 ; -z2/4 ) / ((3-n)/2) / ((3+n)/2)  

               + sin( 90°n ) 1F2( 1 ; (2-n)/2 , (2+n)/2 ; -z2/4 ) / ((2-n)/2) / ((2+n)/2)  

 

Note that even if the argument z can be a complex number, this implementation requires the order ν  
to be a real value so the dual-complex case is not supported. The input parameters are expected in the 

real registers {Z, Y, X}, with the order in the X- register as per the standard 41Z conventions. 
 

Examples. Calculate the weber and Anger functions for ν =, and z=1+i 

 

1, ENTER, 1, PI, ZF$ “ZANGJ”  -> “RUNNING...“  =>  -0.064+J0.041 
1, ENTER^, 1, PI, ZF$ “ZWEBE“  -> “RUNNING...“ =>   0.211+J0.077 

 
Which can be checked in WolframAlpha using the syntax shown in the link: 

 

http://www.wolframalpha.com/input/?i=AngerJ%28pi,+1%2Bi%29  
http://www.wolframalpha.com/input/?i=WeberE%28pi,+1%2Bi%29  

 

http://www.wolframalpha.com/input/?i=WeberE%28pi,+1%2Bi%29
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Program Listing for Weber and Anger routines. 

 
 

01 LBL "ZWEBE" 
02 SF 00 
03 GTO 00 
04 LBL "ZANGJ" 
05 CF 00 
06 LBL 00 
07 RAD 
08 STO 00 
09 RDN 
10 2 
11 ST/ Z 
12  / 
13 ZSTO 02 
14 E 
15 STO 01 
16 RCL 00 
17 2 
18  / 
19 - 
20 STO 02 
21 LASTX 
22 E  
23 + 
24 STO 03 
25 XEQ 00 
26 RCL 00 
27 PI 
28 * 
29 2 
30  / 
31 FS? 00 

32 SIN 
33 FC? 00 
34 COS 
35 ST* Z 
36 * 
37 ZENTER^ 
38 RCL 00 
39 3 
40 + 
41 2 
42  / 
43 STO 03 
44 3 
45 RCL 00 
46 - 
47 2 
48  / 
49 STO 02 
50 XEQ 00 
51 ZRCL 02 
52 Z* 
53 RCL 00 
54 PI 
55 * 
56 2 
57  / 
58 FS? 00 
59 COS 
60 FC? 00 
61 SIN 
62 ST* Z 

63 * 
64 FS? 00 
65 ZNEG 
66 Z<>W 
67 ZRDN 
68 Z+ 
69 ZAVIEW 
70 RTN 
 
71 LBL 00 
72 ZRCL 02 
73 Z^2 
74 ZNEG 
75 RCL 01 
76 2 
77 RDN 
78 RDN 
79 ZHGF 
80 ZENTER^ 
81 0 
82 RCL 02 
83 ZGAMMA 
84 Z/ 
85 ZENTER^ 
86 0 
87 RCL 03 
88 ZGAMMA 
89 Z/ 
90 END 

 

 
 
Registers used: R00-R05 
Flags used: F0 
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12.9   Dilogarithm and Polylogarithm.  {  ZLIN ,  ZLI2  } 

 

 
The Polylogarithm (also known as Jonquière's function) is a special function Lis(z) that is defined by the 

infinite sum, or power series 
 

          

 

 
 
Only for special values of the order s does the Polylogarithm reduce to an elementary function such as 

the logarithm function. The above definition is valid for all complex orders s and for all complex 

arguments z with |z| < 1; it can be extended to |z| ≥ 1 by the process of analytic continuation. See the 
reference:  http://people.reed.edu/~crandall/papers/Polylog.pdf 

 
The implementation of the Polylogarythm is a very rudimentary one, more as an example of direct 

porting of the real variable routine than anything else. It’s based on Jean-Marc’s version, that can be 
found at:  http://hp41programs.yolasite.com/dilogarithm.php 

 

Both parameters can be complex numbers, although the series representation used forces the condition 
that z must be inside the unit circle, that is |z|<1. The program will stop with an error message if 

|z|>1. Note also that this method is not valid either for points on the unit circle, |z|=1. You can use 
function ZLI2 for the dilogarithm, which also works in this case. 

  

In terms of its usage, s is expected to be in level-2 of the complex stack (W), and z in level-1 (Z). Let’s 
see a couple of examples. 

 
 

Example 1.  Calculate Li(2; 0.3+0.4i) 

 
0, ENTER^, 2, ZENTER^ →  2+J0  

(the Z-keypad version: [ Z ], 2 does the same easier) 

 
.4, ENTER^, .3, XEQ “ZLIN”  →  0,266+J0,461  

 

or with FIX 9 settings: 
Re = 0.266596867 

Im = 0.461362892 

 
 

Example 2.  Calculate Li(1+i, 0.3+0.4i) 
 

1, ENTER^, ZENTER^   →  1(1+J) 

.4, ENTER^, .3, XEQ “ZLIN”  →  0,326+J0,565 

 
or with FIX 9 settings: 

Re = 0,326456748 

Im = 0,565254656 
 

As you can see the program listing doesn’t get any easier – so 
despite its limitations (long execution time, no analytic continuation) 

it’s worthwhile including in the module. 
 

Note that ZLIN and ZLI2 are FOCAL programs, and therefore the 

argument z won’t be saved in the LastZ complex register. 

http://people.reed.edu/~crandall/papers/Polylog.pdf
http://hp41programs.yolasite.com/dilogarithm.php
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12.10. Lerch Transcendent Function. {  ZLRCH  } 

 

The Lerch Transcendent function can be seen as an extension of the Polylogarithm, and therefore it’s 

easy to modify the previous program to the more general case – adding a third argument “” as 

follows: 

 

        

 

 
 

note that contrary to the Polylogarithm case, the summation starts at n=0; not at n=1. This would 

represent an issue if the power function returned a DATA ERROR condition for zero exponent (the zero-
th. term being z^0 / 0^s. However the 41Z implementation returns zero for this case, and therefore we 

can use the same program to calculate both the Polylogarithm and Lerch function – taking =0 for the 

additional argument in Lis: 

 

Li(s, z) ~= Lerch (z, s, 0) 
 

To be sure the above expression is just a programming trick, but it’s not mathematically correct. The 
proper relationship between both functions is given by: 

 

             
 
 

 
Example 1.  Calculate  

 

( 0.3+0.4 i  ; 3+4 i ; 1+2 i ) 

 
4, ENTER^, 3, ZENTER^ →  3+J4 

2, ENTER^, 1, ZENTER^ →  1+J2  

.4, ENTER^, .3, XEQ “ZLRCH”  → 7,658-J1,515,  

 

or with FIX 9 settings: 
Re =   7,658159105 

Im = -1,515114367 
 

 

Notice the input order convention for the arguments, with 
z always entered last, in the Z-level of the complex stack. 

  
 

Other useful relationships also involving the Lerch 

Transcendent functions are shown below: 
 

Riemann Zeta: (*) 

 ,  
 

Legendre Chi: 

             
 
 
(*) The convergence is very slow, thus using the dedicated 
ZZETA program is a much more convenient approach. 
 
 

01 LBL "ZLRCH"

02 "|Z|>1"

03 ZOUT?

04 PROMPT
05 ZSTO 01 x

06 CLZ
07 SIGN

08 ZSTO 00 x^0 = 1

09 ZRDN
10 ZSTO 02 a

11 Z<>W

12 ZSTO 03 s

13 ZNEG -s
14 W^Z 1/a^s

15 LBL 01 (k-1)

16 ZRCL 01 x
17 ZRCL 00 x^(k-1)

18 Z* x^k  

19 ZSTO 00
20 ZRCL 02 a+k-1

21 E 

22 ST+ 05

23 + a+k
24 ZRCL 03 s

25 W^Z (a+k)^s

26 Z/ x^k / (a+k)^s

27 Z+ k

28 Z#WR?

29 GTO 01

30 ZAVIEW

31 END
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12.11.  Exponential Integrals. 
 
New since revision 4L, this section groups the Exponential Integral and related functions – all calculated 
using the Hypergeometric function representation.  

 
Index Function Description  

1 ZHGF Complex Hypergeometric function Author: Jean-Marc Baillard 

2 ZEI Complex Exponential Integral  

3 ZCI Complex Cosine Integral  

4 ZHCI Complex Hyperbolic Cosine Integral  

5 ZSI Complex Sine integral  

6 ZHSI Complex Hyperbolic Sine Integral  

7 ZERF Complex Error function  

 
The key enabler for this group is of course the MCODE implementation of the Complex Hypergeometric 

function ZHGF – written by Jean-Marc Baillard. See the excellent web-site at: 

http://hp41programs.yolasite.com/complexhypergeo.php 
 

The rest of the functions are easily obtained as simple and short FOCAL programs, using the well-know 
equivalence expressions.  Their argument is a complex number, taken from the Z-level of the complex 

stack (XY registers). In terms of usability they are grouped in their own launcher, invoked by pressing 
[H] at the Z” prompt; that is: 

 

 
[ Z ], [A], [H]  →             

  
Examples.- 
 

Calculate erf(1+i) and Ei(1+i) 

 
1, ENTER^, [ Z ], [A], [H], [“R“]  →     1,316+J0,190 
1, ENTER^, [ Z ], [A], [H], [“E”]   → 1,765+J2,388 

 

 
Calculate Ei, Ci, Si and their hyperbolic counterparts for the same argument z=(1+i) 

 
1, ENTER^, [ Z ], [A], [H], [“S”]   → 1,104+J0,882 

1, ENTER^, [ Z ], [A], [H], [“H”]   → 0,882+J1,104 

1, ENTER^, [ Z ], [A], [H], [“C”]   → 0,882+J0,287 

1, ENTER^, [ Z ], [A], [H], [“I”]   → 0,882+J1,284 

 

      
See the program listing in next page, showing the economy of programming when using a power horse 

like ZHGF to do all the heavy lifting for you. 
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FOCAL Listing: Exponential integrals. Uses R00 – R05 
 
 

01 LBL "ZERF"  01 LBL "ZEI"  

02 ZENTER^  02 E 
03 Z^2  03 STO 01 
04 E   04 STO 02 
05 STO 01  05 E 
06 1.5  06 + 
07 STO 02  07 STO 03 
08 CLX  08 STO 04 
09 E  09 ENTER^ 
10 R^  10 R^ 
11 R^  11 R^ 
12 ZHGF  12 ZHGF 
13 LASTZ  13 LASTZ 
14 ZNEG  14 Z* 
15 ZEXP  15 LASTZ 
16 Z*  16 GTO 01 

17 Z*  17 LBL "ZCI" 

18 PI  18 SF 00 
19 SQRT  19 GTO 00 

20 1/X  20 LBL "ZHCI"  

21 ST+ X  21 CF 00 

22 ST* Z  22 LBL 00 

23 *  23 ZENTER^  
24 ZAVIEW  24 ZHALF 
25 END  25 Z^2 
   26 FS? 00 

01 LBL "ZSI"   27 ZNEG 

02 SF 00  28 ZENTER^  
03 GTO 00  29 E 

04 LBL "ZHSI"   30 STO 01 

05 CF 00  31 STO 02 

06 LBL 00  32 CLX 

07 ZENTER^  33 2 
08 ZHALF  34 STO 03 
09 Z^2  35 STO 04 
10 FS? 00  36 1.5 
11 ZNEG  37 STO 05 
12 .5  38 ST+ X 
13 STO 01  39 R^ 
14 3  40 R^ 
15 *  41 ZHGF 
16 STO 02  42 Z* 
17 STO 03  43 Z<>W 

18 CLX  44 LBL 01 

19 E  45 ZLN 
20 ENTER^  46 Z+ 
21 2  47 ZGEU 
22 R^  48 Z+ 
23 R^  49 ZAVIEW 
24 ZHGF  50 END 
25 Z*    
26 ZAVIEW    
27 END    
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12.12.  Exponential Integrals, Complex Means and General Methods Launchers. 
 

All this many functions sure enough will benefit from having “theme” launchers grouping them, for 
easier access and logical segregation. The usability is enhanced and doesn’t require overlays for the 

most frequente options within the groups. 
 

The first one combines the Exponential Integrals and the Complex Means. Use the key sequence below 
to access it, and then the [SHIFT] key to toggle between uts two parts: 

 

  [ Z ], [A], [H]                [ Z ], [A], [H], [SHIFT] 
 

 

 
 
See below the function correspondence for each launcher: 
 

Exponential Integrals  Complex Means 

[E] ZEI  [A] ZAMN 

[S] ZSI  [G] ZGMN 

[H] ZHSI  [H] ZHMN 

[C] ZCI  [M] ZAGM 

[I] ZHCI  [N] ZGHM 

[R] ZERF  [K] ZELK 

[F] ZHG  [I] ZINPT 

   [O] ZOUPT 

 
 
 

Finally the remaining Lauchers deal with Eliptical Functions and Complex Methods. You access these 
groups using the keyword combinations shown below: 

 

 
  [ Z ], [A], [R/S]            [ Z ], [A], [R/S], [SHIFT] 

   

     

 

Elliptic Functions  DFT/Other Functions 

[1] ZELIP1  [I] ZIDFT 

[2] ZELIP2  [D] ZDFT 

[L] ZELK  [S] “ZSAM” 

[E] ZELIPE  [C] ZCTLN 

[K] ZELIPK  [P] ZPSIN 

[P] ZELPKE  [M] ZIGAM 
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Appendix. Saving & Restoring the Z-Stack in X-Memory. {  SAVEZS  ,  GETZS  } 

 
Two functions are included in the Deluxe 41Z Module to save and restore the complete complex stack 
buffer in extended memory. This includes all complex levels, the real stack and the current POLAR/REC 

settings. The functions are SAVEZS and GETZS. 
 

   
 

 

In program execution, the file name is expected by these functions to be in ALPHA. For convenience, in 
RUN mode the functions will prompt for the file name automatically - remember that ALPHA is 

constantly being updated with the complex number values, so without this automated prompting 
feature you would need to re-write the file name in-between operations. 

 

You can use them to preserve their contents in a permanent X-Mem file. Only one active complex 
buffer is allowed in the calculator, but you can choose from several X-Mem files holding different 

complex stacks, to upload their contents on demand.  Therefore prior to executing GETZS you need to 
ensure that there’s no buffer#8 in memory – you can use function CLB in the AMC_OS/X module for 

that. Failure to do so will generate the error message ‘DUP BUF” 
 

The X-mem file has a custom type “Z”, with code=8. The file size is always 12 registers. If you’re using 

the AMC_OS/X Module the CAT”4 enumeration includes support for this file type, which will be properly 
shown as a ‘Z” type: 

 

 
 
Where here the complex stack file name is “ZSTACK”. 

 
      

 
 
 
 
 
 
 
 
 
Note 3.- The Hypergeometric Function is also the preferred method used for the calculation of the 
Exponential Integrals and the Error function – which have been programmed as simple FOCAL 

examples of the former. See the descriptions in the SandMath module users’ Manual for additional 

reference. 
 
Note 4.- The programs supplied for the Polylogarithm and Lerch functions are simplified and necessarily 
non-rigorous, not using contour integrals or residues. See the references below for a formal treatment 

of the problem, clearly exceeding the scope of this manual.- 

 
http://rspa.royalsocietypublishing.org/content/459/2039/2807.full.pdf 

http://rspa.royalsocietypublishing.org/content/463/2080/897.full.pdf 

 

http://rspa.royalsocietypublishing.org/content/459/2039/2807.full.pdf
http://rspa.royalsocietypublishing.org/content/463/2080/897.full.pdf
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Appendix.- Delta-Wye Transformation. 
 

Here’s a token of appreciation for the EE audiences – using the 41Z to tackle a classic: Delta-Wye 
impedance transformation for 3-phase systems.  The simple program below is all there is to it – behold 
the power of the 41Z complex stack in action :-) 
 

LBL "D-Y LBL "DYD"

SF 00 ZRCL 00 Za  /  Zab

GTO 00 ZRCL 01 Zb  /  Zbc

LBL "Y-D Z+ Za+Zb  /  Zab+Zbc

CF 00 FC? 00

LBL 00 GTO 01

"Za" ZRCL 02 Zab
FS? 00 Z+ Zab+Zbc+Zca

"|-b" ZINV 1/(Zab+Zbc+Zca)

"|-=?" ZRPL^

PROMPT ZRCL 00 Zab

ZSTO 00 ZRCL 02 Zca

"Zb" Z* ZabZca

FS? 00 Z* Za = ZabZca

"|-c" Z<>W 1/(Zab+Zbc+Zca)

"|-=?" ZRCL 01 Zbc

PROMPT ZRCL 00 Zab

ZSTO 01 Z* ZabZbc

"Zc" Z* Zb = ZabZbc/(Zab+Zbc+Zca)

FS? 00 ZRUP 1/(Zab+Zbc+Zca)

"|-a" ZRCL 02 Zca

"|-=?" ZRCL 01 Zbc

PROMPT Z* ZbcZca

ZSTO 02 Z* Zc = ZbcZca/(Zab+Zbc+Zca)

XEQ "DYD" RTN

ZSTO 02 LBL 01

ZRDN LASTZ Zb

ZSTO 01 ZRCL 00 Za

ZRDN Z* ZaZb

ZSTO 00 ZRCL 02 Zc

ZRDN Z/ ZaZb/Zc

ZRDN Z+ Zab = Za+Zb+ZaZb/Zc

ZVIEW 00 ZRCL 01 Zb

ZVIEW 01 ZRCL 00 Za

ZVIEW 02 Z/ Zb/Za

RTN ZRCL 02 Zc

Z* ZbZc/Za

LASTZ Zc
Z+ Zc+ZbZc/Za

ZRCL 01 Zb

Z+ Zb+Zc+ZbZc/Za

ZRCL 00 Za

ZRCL 01 Zb

Z/ Za/Zb

ZRCL 02 Zc

Z* ZaZc/Zb

LASTZ Zc

Z+ Zc+ZaZc/Zb

ZRCL 00 Za

Z+ Za+Zc+ZaZc/Zb

RTN

Delta <-> Why conversions
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Appendix 1.- Complex Buffer functions. 
 
This appendix lists the buffer handling functions included in the 41Z DIAGNOSTICS module, and thus 

are not related to the Complex Number treatment per se. This set is only useful to diagnose problems 
or to bypass the normal execution of the module’s “standard” functions, therefore its usage is not 

recommended to the casual user (i.e. do it at your own risk!). 
 

(*) Items highlighted in yellow indicate prompting functions. 
 

 
Buffer layout. The complex buffer has 5 levels, labelled L0 to L4; that’s 10 memory registers plus the 

header and footer registers – for a total of 12 registers. The function names in this group use the Level 
number (L0 to L4) to identify each level, as opposed to the U, V, W, and Z notation employed in 

previous sections of the manual. 
 

 

 

Function Description Input Output 

-HP 41Z Initializes Z Buffer None Buffer created 

CLZB Clears Z buffer None Buffler cleared 

L1=XY? Is L1 equal to XY? None Y/N, skip if false 

L1<>L _ Swap L1 & Level Level# as suffix levels exchanged 

L1<>LX Swap L1 & Level level in X levels exchanged 

L2=ZT? Is L2 equal to ZT? None Y/N, skip if false 

L2>ZT Copies L2 into ZT None L2 copied to ZT 

LVIEW _ View Level Level# as suffix Transposed value! 

LVIEWX View level by X level in X Transposed value! 

PREMON Copies XY into L0 and finds Zbuffer Re(z) in X; Im(z) in Y none 

PSTMON Copies XY into L1 and synch's up Complex stack Z Re(z) in X; Im(z) in Y 

RG>ZB _ _ Copies registers to Z buffer Reg# as suffix data copied from registers 

ST>ZB Copies real stack to L1 & L2 None stack copied to buffer 

XY>L _ Copies XY into Level Level# as suffix XY copied to LEVEL 

XY>L0 Copies XY into L0 Re(z) in X; Im(z) in Y XY copied to L0 

XY>L1 Copies XY into L1 Re(z) in X; Im(z) in Y XY copied to L1 

ZB>RG _ _ copies buffer to registers Reg# as suffix data copied to registers 

ZB>ST Copies L1 & L2 into real stack None buffer copied to Stack 

ZBDROP Drops  Z buffer one level None levels dropped 

ZBHEAD Z buffer Header info None header register in ALPHA 

ZBLIFT Lifts Z buffer one level None buffer lifted 

ZBSHOW Shows Z Buffer None shows header & all levels 

../../../Mis%20Documentos/HP-4141Z%22%20l
../../../Mis%20Documentos/HP-4141Z%22%20l
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The buffer header (b0 register) is placed at the lowest memory address. It contains the buffer id#, its 

size, and its initial address (when it was first created – no updates if it’s re-allocated later on). 
 

Buffer creation is done automatically by the 41Z module upon power on (when the 41 awakes from 

deep sleep), using the corresponding poll point in the module. The contents of the real stack registers 
XYZT is copied into the buffer levels L1 & L2 upon initialization.  

 
The buffer is maintained by the 41 OS, which handles it when modifying the layout of main memory – 

either changing the SIZE settings, or modifying the user key assignments. The buffer id# is 8, and thus 

should be compatible with any other memory buffer that uses a different id# (an example of which are 
the TIMER alarms, with id#=10). 

 
Should for any reason the buffer get damaged or erased (like when using the function CLZB), the 

message “NO Z-STACK” would appear when trying to execute any of the 41Z module functions. To 
manually re-create the complex buffer simply execute the first function in the module, “–HP 41Z”  - 
either by using XEQ or the Complex Keyboard sequence “Z, SHIFT, Z”.  This requires at least 12 

memory registers to be available or the error message “NO ROOM” will be shown. 
 

Because the buffer can be dynamically re-allocated by the 41 OS upon certain circumstances, it’s not 
possible to store its address to be reused by the functions. Every 41Z function would first seek out the 
buffer address prior to proceeding with its calculation. Fortunately this takes very little overhead time. 

 
 
Buffer synchronization with the appropriate real-stack levels is also performed automatically by the 
41Z functions, as follows: 

 

- In the input phase (pre-execution), monadic functions will copy the XY contents into level L1 
prior to executing their code. Dual functions will do the same for the second argument Z, and 

will use the current contents of the L2 level as first argument W.   
 

- In the output phase (post-execution) the results will be placed in the complex buffer levels and 

then copied to the real stack registers as appropriate: XY for monadic functions, and XZYT for 
dual functions. 

 
That’s the reason why the real stack should just be considered as a scratch pad  to prepare the data 

(like doing math on the real values), as only levels X,Y will be used. You must use ZENTER^ to push 
the W argument into the complex level L2. In other words: real stack registers T,Z will be ignored! 

 

The same consideration applies when performing chain calculations: because there’s no automated 
complex stack lift, the result of a monadic function would be overwritten by the subsequent input 
unless it is first pushed into the complex stack, using ZENTER^ or another 41Z function that does 
stack lift. 
 

Example:  Calculate Ln(1+i) + (2-i) 
 

The following sequence use the direct data entry, entering Im(z) first. 
1, ENTER^, ZLN, ZENTER^, 1, CHS, ENTER^, 2, Z+   -> 2,347-j0,215 

 

 
Some functions perform stack lift by default, and thus ZENTER^ is not required before them.  

They are as follows: 
 

• LASTZ   

• ZRCL _ _ 

• ZREAL^  (also when using the complex real keypad, Z plus digit key) 

• ZIMAG^ (also when using the complex imaginary keypad, Z, radix, plus digit key) 

• ^IM/AG  Probably the most intricate function in the module 
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The following sequence uses natural data entry - entering Re(z) first - as an alternative method for the 

previous example. Note that because ^IMG does stack lift, it’s not necessary to use ZENTER^  

 
1, ^IMG, 1, R/S, ZLN, 2, ^IMG, 1, CHS, R/S, Z+ -> 2,347-j0,215 

 
 

Buffer synchronization with the real stack registers can be tested and forced using the following 
functions in this group: 

 

 

To dump the complete contents of the complex buffer into memory registers and back you can use 
these two complementary functions:  

 

Note that RG>ZB won’t check for valid header data, thus it expects the contents to be correct – like 
with a previously execution of ZB>RG. Remember that the header register is a non-normalized 

number (NNN), thus do not recall it using RCL or X<>. 

 
 
Other functions to manipulate the contents of the buffer levels are: 

 
 

All these functions act on the complex buffer, but will not display the “resulting” complex number (i.e. 
will not trigger ZAVIEW upon completion).  To see (view) the contents of the buffer levels without 

altering their position you can use the following functions:  

 

Note that with these functions all complex level contents will be shown transposed, that is: Im(z) + j 
Re(z). 

 
 
 
 
 
 
 
 

L1=XY? - Tests for the first buffer level and XY registers 

XY>L1    - Copies X,Y into level L1 

L2=ZT?  - Tests for second buffer level and Z,T registers 

L2>ZT    - Copies L2 into registers Z,T 

ST>ZB   - Copies real stack XYZT to buffer levels L1 & L2 

ZB>ST   - Copies L1 & L2 to the real stack XYZT 

ZB>RG _ _  - Copies complex buffer to memory registers 

RG>ZB _ _  - Copies memory registers to complex buffer 

L1<>L _  - swaps buffer level L1 and level given by prompt 

L1<>LX   - swaps buffer level L1 and level input in X 

XY>L0    - copies registers X,Y into buffer level L0  (used to save arguments into LastZ) 

XY>L _   - copies registers X,Y into buffer level given by prompt 

ZBDROP - drops contents of complex buffer one level (used during ZRDN) 

ZBLIFT   -  lifts contents of complex buffer one level (used by ZRUP, ZENTER^ and others) 

LVIEW _    - prompts for level number (0 – 4) 

LVIEWX    - expects level number in X 

ZBSHOW  - lists the contents of all buffer levels 

ZBHEAD   - shows in Alpha the decoded buffer header 
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finally, the other two functions are auxiliary and mainly used to perform action between the two lower 

and upper 4k-pages within the 41Z module: (*) 
 

 

(*) Note: FAT entries for these two functions were removed in newer versions of the module. 
 

Because of its relevance and importance within the 41Z module, the following section lists the buffer 

creation and interrogation routines – pretty much the heart of the implementation. Consider that they 
are called at least twice every time a function is executed and you’ll appreciate their crucial role in the 

whole scheme! 
 

 

 
 

 

                        
  
 

 
 

PREMON  - Finds Z Buffer address, Copies XY into L0 and checks X,Y for ALPHA DATA  

PSTMON  -  Copies the Z complex level into X.Y  
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Remember that the buffer is refreshed (or created) each time the calculator is turned on, and that it 

gets reallocated when key assignments or other buffers (like timer alarms) are made – yet it’s 
theoretically possible that it gets “unsynchronized” or even lost altogether, and therefore the 

assignment to the –HP 41Z function as well. 
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Notice how we finish with ZAVIEW to show the current complex number in the stack upon buffer 

creation. [CHKBUF] does not create the buffer, but reads its address into register A and the content of 
the header into register C.  
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Appendix 2. Complex Keyboard key maps. 
 
The following table shows the detailed key map supported by the ZL complex keyboard function 

launcher. 

Function Function

I II III IV V Name I II III IV V Name

Z 1/X ZINV Z S-  -HP 41Z

Z SQRT ZSQRT Z Y^X W^Z

Z LOG ZLOG Z X^2 Z^2

Z LN ZLN Z 10^X ZALOG

Z X<>Y Z<>W Z e^X ZEXP

Z RDN ZRDN Z X<>Y ZTRP

Z SIN ZSIN Z RDN ZRUP

Z COS ZCOS Z ASIN ZASIN

Z TAN ZTAN Z ACOS ZACOS

Z XEQ ^IMG _ Z ATAN ZATAN

Z STO ZSTO _ _ Z ASN ZK?YN

Z RCL ZRCL _ _ Z LBL ZSIGN

Z SST Z<> _ _ Z GTO Z*I

Z ENT^ ZENTER^ Z CAT ^IMG _

Z CHS ZNEG Z ISG ZCONJ

Z EEX Z^X Z RTN X^Z

Z - Z- Z CLX CLZ

Z + Z+ Z X=Y? Z=W?

Z * Z* Z SF ZNORM

Z  / Z/ Z CF ZMOD

Z 0-9 Z0-Z9 Z FS? ZARG

Z R/S ZAVIEW Z X<=Y? Z=WR?

Z , 0-9 ZJ0-ZJ9 Z BEEP ZTONE

Z Z 1/X W^1/Z Z P-R ZREC

Z Z SQRT ZPSI Z R-P ZPOL

Z Z LOG ZLNG Z X>Y? Z=I?

Z Z LN e^Z Z FIX ZRND

Z Z X<>Y Z<>V Z SCI ZINT

Z Z RDN ZQRT Z ENG ZFRC

Z Z XEQ ZIMAG^ Z X=0? Z=0?

Z Z STO ZREAL^ Z PI ZGAMMA

Z Z RCL Z/I Z LASTX LASTZ

Z Z SST CLSTZ Z VIEW ZVIEW _ _ 

Z Z ENT^ ZRPL Z SIN ZSINH

Z Z EEX Z^1/X Z COS ZCOSH

Z Z - Z#W? Z TAN ZTANH

Z Z 7 ZWDET Z SIN ZASINH

Z Z 8 ZWDIST Z COS ZACOSH

Z Z 9 ZWANG Z TAN ZATANH

Z Z + ZREAL? Z Z SQRT ZNXTNRT _

Z Z 4 ZIN? Z Z LN ZNXTLN

Z Z 5 ZWCROSS Z Z SIN ZNXTASN

Z Z * ZIMAG? Z Z COS ZNXTACS

Z Z 1 ZUNIT? Z Z TAN ZNXTATN

Z Z 2 ZWLINE Z Z LOG ZKBS

Z Z  / Z#0? Z Z LN ZYBS

Z Z 0 ZOUT? Z Z COS ZIBS

Z Z , ZWDOT Z Z TAN ZJBS

Z Z Z Z<>U Z Z SIN ZWL

Z Z SQRT EIZ/IZ

Level Level
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 Appendix 3.- Formula Compendium. 
 

Elementary complex numbers and functions – By W. Doug Wilder. 
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Appendix 4.- Quick Reference Guide.  
 
The tables in the following six pages list all 41Z functions in alphabetical order.  

New functions in the Deluxe edition have pink background. Sub-functions are in brown font color. 
 

# Function Description Formula Input Output Comments 

1  -HP 41Z  Initializes Complex Stack  Z=XY; W=ZT  none  Initializes Z buffer & ZAVIEW runs on CALC ON 

2  W^1/Z  Complex Y^1/X  w^1/z = exp(Ln w / Z)  w in W; z in Z (XY)  w^1/z in Z (XY) Drops Buffer 

3  W^Z  Complex Y^X  w^z = exp(z*Ln w)  w in W; z in Z (XY)  w^z in Z (XY) Drops Buffer 

4  ZF#  _ _ _  Launcher by index  n/a  Sub-function index  Executes Sub-function  

5  ZF$  _  Launcher by Name  n/a  Sub-function Name  Executes Sub-function  

6  Z+  Complex addition  (x1+x2) + i (y1+y2)  w in W; z in Z (XY)  w+z in Z (XY) Drops Buffer, LastZ 

7  Z-  Complex substraction  w-z = w + (-z)  w in W; z in Z (XY)  w-z in Z (XY) Drops Buffer, LastZ 

8  Z*  Complex multiplication  (x1*x2 - y1*y2) + i (x1*y2 + y1*x2)  w in W; z in Z (XY)  w*z in Z (XY) Drops Buffer, LastZ 

9  Z/  Complex division  w/z = w * (1/z)  w in W; z in Z (XY)  w/z in Z (XY) Drops Buffer, LastZ 

10  Z^1/X  Hybrid Y^X  z^1/n = r^1/n * exp(i*Arg/n)  x in X reg; z in Y,Z regs  z^1/x in Z (XY) does LastZ 

11  Z^2  Complex X^2  z^2 = r^2 * exp(2i*Arg)  z in Z (XY)  z^2 in Z, (XY) does LastZ 

12  Z^3  Cubic power  z=z^3  z in Z (Im in Y, Re in X)  result in Z (XY) more accurate than Z^X 

13  Z^X  Hybrid Y^X  z^n = r^n * exp(i*n*Arg)  x in X reg; z in Y,Z regs  z^x in Z, (XY) does LastZ 

14  Z=0?  Is z=0?  is z=0?  z in Z (XY)  YES/NO (skips if false)   

15  Z=I?  Is z=I?  is z=i?  z in Z (XY)  YES/NO (skips if false)   

16  Z=W?  Is z=w?  is z=w?   w in W; z in Z (XY)  YES/NO (skips if false)   

17  Z=WR?  are z & w equal if rounded?  is Rnd(z)=Rnd(w)?  w in W; z in Z (XY)  YES/NO (skips if false)   

18  Z#0?  is z equal to zero?  is z#0?  z in Z (XY)  YES/NO (skips if false)   

19  Z#W?  Is z equal to w?  is z=w?  w in W; z in Z (XY)  YES/NO (skips if false)   

20  ZACOS  Complex ACOS   acos z = pi/2 - asin z  z in Z (XY)  acos(z) in Z (XY) does LastZ 

21  ZALOG  Complex 10^X  e^[z*ln(10)]  z in Z (XY)  10^z in Z (X,Y) and ALPHA does LastZ 

22  ZASIN  Complex ASIN  asin z = -i * asinh (iz)  z in Z (XY)  asin(z) in Z, (XY) does LastZ 

23  ZATAN  Complex ATAN  atan z = -i * atanh (iz)  z in Z (XY)  atan(z) in Z (XY) does LastZ 

24  ZCOS  Complex COS  cos z = cosh (iz)  z in Z (XY)  cos(z) in Z (XY) does LastZ 

25  ZEXP  Complex e^X  e^x * e^(iy)  z in Z (XY)  e^z in Z (XY) and ALPHA does LastZ 

26  ZHACOS  Complex Hyp. ACOS  acosh z = Ln[z + SQ(z^2 - 1)]  z in Z (XY)  acosh(z) in Z (XY) does LastZ 

27  ZHASIN  Complex Hyp. ASIN  asinh z = Ln[z + SQ(z^2 + 1)]  z in Z (XY)  asinh(z) in Z (XY) does LastZ 

28  ZHATAN  Complex Hyp. ATAN  atanh z = 1/2 * Ln[(1+z)/(1-z)]  z in Z (XY)  atanh(z) in Z (XY) does LastZ 

29  ZHCOS  Complex Hyp. COS  cosh z = 1/2 * [e^z + e^-z]  z in Z (XY)  cosh(z) in Z (XY) does LastZ 

30  ZHSIN  Complex Hyp. SIN  sinh z = 1/2 * [e^z - e^-z]  z in Z (XY)  sinh(z) in Z (XY) does LastZ 
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# Function Description Formula Input Output Comments 

31  ZHTAN  Complex Hyp. TAN  tanh z = (e^z-e^-z)/(e^z+e^-z)  z in Z (XY)  tanh(z) in Z (XY) does LastZ 

32  ZCF2V _  Complex Continued Fractions  f(z) = B(0) + A1/[B1 +A2/[B2 + A3/[B3+..]]]  User program with Bn and An  F(Z) if convergence  Prompts for Prgm Name 

33  ZDERV _  Complex Function Derivatives  df/dz and d2f/dz2  User program w/ f(z)  f”(z) in “W”, f’(z) in “Z”  Prompts for Prgm Name 

34  ZINT?  Checks if Z is an integer number  are Im(z)=0 and FRC[Re(z)]=0? z in Z (Im in Y, Re in X) YES/NO (skips if false) used in Bessel fncs 

35  ZINV  Complex Inversion  x/(x^2 + y^2) - i y/(x^2 + y^2) z in Z (XY) 1/z in Z (XY) and ALPHA does LastZ 

36  ZLN  Complex LN  ln(z) = ln(r) + i*Arg z in Z (XY) Ln(z) in Z (XY) does LastZ 

37  ZLOG  Complex LOG  log(z) = ln(z)/ln(10) z in Z (XY) Log(z) in Z (X,Y) does LastZ 

38  ZNEG  Complex CHS   -z = -x - iy z in Z (XY)  -z in Z (XY) does LastZ 

39  ZOUT?  Is z outside the unit circle?  is |z|>1? z in Z (XY) YES/NO (skips if false)   

40  ZPI*  Product by pi  z*p z in Z (XY) result in Z (XY) more accurate than FOCAL 

41  ZGSS?  Is z Gaussian?  Re(z) and Im(z) integers? z in Z (XY) YES/NO (skips if false)  

42  ZRND  Rounds Z to display settings  rounded values to display z in Z (XY) Rounded Re & Im in Z (XY) does LastZ 

43  ZSIN  Complex SIN  sin z = -i *sinh (iz) z in Z (XY) sin(z) in Z (XY) does LastZ 

44  ZSQRT  Complex SQRT (Direct)  sqr(z)=sqr( r) * e^(i*Arg/2) z in Z (XY) main value of z^1/2 in Z (XY) does LastZ 

45  ZTAN  Complex TAN  tan z = - i * tanh (iz) z in Z (XY) tan(z) in Z (XY) does LastZ 

46  ZUNIT?  Is z on the unit circle?  is |z|=1? z in Z (XY) YES/NO (skips if false)   

47  -ZSTACK  Section Header  n/a none Shows "Running…" msg   

48  CLZ  Clears Z   Re(z)=0=Im(z) none Z level (XY) cleared   

49  CLZST  Clears Z-Stack  n/a none Z-Stack Cleared   

50  LASTZ  Complex LASTX  n/a none Last z in X,Y regs; Lifts Buffer 

51  ZAVIEW  _ _  Shows Complex Z  n/a z in Z (XY) Shows z in ALPHA   

52  ZENTER^   Copies Z into the W register  n/a z in Z (XY) Pushes z one level Up Lifts Buffer 

53  Z<>  _ _   Complex Exchange  n/a Reg# as suffix Exchanges Z with regs contents Prompting 

54  Z<>ST _ _  Exchanges Z and Level#  n/a z in XY, level# in prompt z in L#; L# in L1 & X,Y Prompting 

55  Z<>W  Exchange Z and W (L2)  n/a w in W, z in Z (XY) z in L2 & Z,T  w in L1 & X,Y    

56  ZIMAG^  Enter imaginary number  n/a Im(z) in X zero in X; Im(z) in Y  Lifts Buffer 

57  ZRCL _ _   Complex RCL   n/a Reg# as suffix z in X,Y - lifts stack Lifts Buffer, Prompting 

58  ZRDN  Z-Stack Roll Down  n/a Stack Levels Rolls Down stack Drops Buffer 

59  ZREAL^  Enter Real number in Z  n/a Re(z) in X Re(z) in X;, Zero in Y Lifts Buffer 

60  ZRPL^  Replicates z in all levels  L4=L3=L2=L1 z in Z (XY) z in all 4 levels Lifts Buffer 

61  ZRUP  Z-Stack Roll Up  n/a Stack Levels Rolls Up stack Lifts Buffer 

62  ZSTO _ _  Complex STO  n/a Reg# as suffix Stores z in consequtive regs Prompting 

63  ZVIEW _ _   Complex View  n/a Reg# as suffix Shows z in ALPHA Prompting 

64  ZK?YN  _  Block Key Assignments  n/a prompt-driven Makes / Removes assignments may do PACKING 

1  ^IM/AG _  Natural Data Entry  Re ^ IM or  r ^ arg Re(z) in X, Im(Z)  as suffix z in Z (XY), stack lifted Prompting, Lifts Buffer 

2  GETSZ  _  Get z=Stack file from X-Mem   n/a File Name in Alpha Copies file to Buffer #8 Includes REC/POLAR 
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# Function Description Formula Input Output Comments 

3  NXTACS  Next ACOS Value   z1,2 = +/- z0 + 2p z0 in Z (XY) z1 in W, z2 in Z (XY) does LastZ 

4  NXTASN  Next ASIN Value   z1,2 = +/- z0 + 2p/2 z0 in Z (XY) z1 in W, z2 in Z (XY) does LastZ 

5  NXTATN  Next ATAN value   z1,2 = z0 +/- p z0 in Z (XY) z1 in W, z2 in Z (XY) does LastZ 

6  NXTLN  Next Ln(z)  next(k) = Ln(z) + 2kp J LN(z) in Z (XY) regs z1 in W, z2 in Z (XY) does LastZ 

7  NXTRTN _  Next Complex Root  next(k) = z^1/n * e^(2kp/n J) n in X reg.; z^1/n in Z,Y regs z1/n * e^(2p/n J) in Z (XY) does LastZ 

8  SAVEZS  _  Saves z-Buffer to X-Mem  n/a File Name in ALPHA Copies buffer #8 to File Includes REC/POLAR 

9  ZCHSX  Sign Change by X  (-1)n * z x in X reg; z in Y,Z regs {(-1)^x * z} in Z (XY) does LastZ 

10  ZGEU  Euler's gamma constant  =0,577215665 none g constant as complex Lifts Buffer 

11  ZL _  Complex keyboard launcher  n/a Prompt-driven Launches function prompting, launcher 

12  ZPL  Complex Polynomial Evaluation  P(z) =  ak z^k Control word bbb.eee Polynomial result Coeffs. Expected in ZRegs 

13  ZRC+  _ _  RCL addition  Z= Z + cR z in Z (XY), data in cR Adds cR to z does LastZ 

14  ZRC-  _ _  RCL subtraction  Z = z – cR z in Z (XY), data in cR Subtracts cR from z does LastZ 

15  ZRC*  _ _  RCL product  Z = z * cR z in Z (XY), data in cR Multiplies  z by cR does LastZ 

16  ZRC/  _ _  RCL division  Z = z / cR z in Z (XY), data in cR Divides z by cR does LastZ 

17  ZST+ _ _   STO Addition  cR = cR + z z in Z (XY), data in cR Adds z to complex register# prompting 

18  ZST- _ _  STO Subtraction  cR = cR - z z in Z (XY), data in cR Subtract z from complex register# prompting 

19  ZST* _ _  STO Multiply  cR = cR * z z in Z (XY), data in cR Multiplies z to complex register# prompting 

20  ZST/ _ _  STO Divide  cR = cR / z z in Z (XY), data in cR Divides complex register by z prompting 

21  -ZVECTOR  Section Header n/a none Displays Revision Number   

22  POLAR  Sets POLAR mode on sets the Polar flag in Buffer none shows Re(z)+J Im(z)   

23  RECT  Sets RECT mode on clears the Polar flag in Buffer none shows r <) arg   

24  ZAGM  Arithmetic-Geometric Mean AGM  w in W, z in Z (XY) Result in Z(XY) does LastZ 

25  ZARG  Argument of Z atan(y/x) z in Z (XY) Arg(z) in X, (Y reg void) zeroes Y, LastZ 

26  ZMOD  Module of Z |z|=sqr(x^2+y^2) z in Z (XY) Mod(z) in X, (Y reg void) zeroes Y, LastZ 

27  ZNORM  Norm of Z (I.e. square of Module) ||z||=|z| ^2 z in Z (XY) (mod(z)^2) in X,Y zeroes Y, LastZ 

28  ZPOL  Converts to Polar notation R-P z in Z (XY) Mod(z) in X; Arg(z) in Y does LastZ 

29  ZREC  Convers to Rectangular notation P-R Mod(z) in X; Arg(z) in Y Re(z) in X; Im(z) in Y does LastZ 

30  ZWANG  Angle between Z and W arg(zw) = Arg(z) - Arg(w) z in Z (XY) ang(z,w) in X (Y void) Drops Buffer LastZ 

31  ZWCROSS  Cross product of Z and W z x w = |z| *|w| *Sin(Angle) w in W, z in Z (XY) z x w  in X (Y void) Drops Buffer LastZ 

32  ZWDET  Determinant of Z and W |zw| = x2*y1 - y2*x1 w in W, z in Z (XY) det(z,w) in X (Y void) Drops Buffer LastZ 

33  ZWDIST  Distance between Z and W |w-z| = SQR[(x2-x1)^2 - (y2-y1)^2] w in W, z in Z (XY) dist(z,x) in X (Y void) Drops Buffer LastZ 

34  ZWDOT  Dot product of Z and W z*w = x1*x2 + y1*y2 w in W, z in Z (XY) dot(z,w) in X, (Y void) Drops Buffer LastZ 

35  ZWLINE  Line equation defined by Z and W a=(y1-y2) / (x1-x2) w in W, z in Z (XY) y=ax+b in ALPHA; b in Y, a in X Drops Buffer LastZ 

36  ZWLOG  Base-w Logarithm  base w in W, arg. In Z w in W, z in Z (XY)   Drops Buffer, LastZ 

37  -HL ZMATH  Section Header Calculates 2^x-1 x in X Result in X used in ZZETA 
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# Function Description Formula Input Output Comments 

38  ZAWL  Inverse of Lambert W z* e^z z in Z (XY) result in Z (XY) does LastZ 

39  ZBS#  Bessel subroutine 1st./2nd. Kind see manual, Flag 6 controls case w in W, z/2 in Z w in ZR00, z/2 in ZR01 FOCAL 

40  ZCI  Cosine Integral Ci(z) = -(z^2/4) F23(1, 1; 2, 2; 3/2, -z^2/4) z in Z (XY) result in Z (XY) FOCAL 

41  ZCRT  Complex Cubic Eq. Roots Cubic ecuation roots A,B,C,D in Z-Stack roots in V, W, and Z (XY) levels FOCAL 

42  ZEI  Exponential Integral Ei =  + ln|z|+ z* F22(1,1; 2,2; z) z in Z (XY) result in Z (XY) FOCAL 

43  ZERF  Error Function erf(z) = 2z/sqr() e^(-z^2) F11(1, 3/2; z^2) z in Z (XY) result in Z (XY) FOCAL 

44  ZGAMMA  Complex G(z) for z#0, -1, -2… Lanczos approximation z in Z (XY) G(z) in Z (XY) uses reflection for Re(z)<0 

45  ZHCI  Hyperbolic Cosine Integral Chi(z) = (z^2/4) F23(1, 1; 2, 2; 3/2, z^2/4) z in Z (XY) result in Z (XY) FOCAL 

46  ZHGF  Hypergeometric Function See manual see manual result in Z (XY) by Jean-Marc Baillard 

47  ZHSI  Hyperbolic Sine Integral Shi(z) = z * F12 (1/2 , 3/2, 3/2, z^2/4) z in Z (XY) result in Z (XY) FOCAL 

48  ZIBS  Bessel I function see manual w in W, z in Z (XY) I(w,z) in Z (XY) FOCAL 

49  ZJBS  Bessel J function see manual w in W, z in Z (XY) J(w,z) in Z (XY) FOCAL 

50  ZKBS  Bessel K function see manual w in W, z in Z (XY) K(w,z) in Z (XY)  FOCAL 

51  ZLI2  Dilogarithm Li(2,z) = (z^k /k^2); k=1,2… z in Z (XY) result in Z (XY) by Jean-Marc Baillard 

52  ZLIN  Polylogarithm Li(s,z) = (z^k /k^s); k=1,2… order w in W; arg. z in Z result in Z (XY) FOCAL 

53  ZLNG  Gamma Logarithm function Stirling method w/ correction z in Z (XY) result in Z (XY) FOCAL 

54  ZLRCH  Lerch Transcendent Fi(z,s,a) = z^k /(k+a)^s]; k=,0,1… s,a, z  in U, W, and Z(XY) result in Z (XY) FOCAL 

55  ZPROOT  Roots of complex polynomials Iterative Prompt-driven roots in W and Z (XY) levels by Valentin Albillo 

56  ZPSI  Complex Digamma Approximation z in Z (XY) Psi(z) in X,Y regs. And ALPHA FOCAL 

57  ZQRT  Complex Quadratic Eq. Roots Quadratic ecuation roots A,B,C in Zstack Calculates roots of equation FOCAL 

58  ZSHK1  Spherical Hankel h1 h(1)(w,z) order w in W; arg. z in Z result in Z (XY) FOCAL 

59  ZSHK2  Spherical Hankel h2 h(2)(w,z) order w in W; arg. z in Z result in Z (XY) FOCAL 

60  ZSI  Sine Integral Si(z) = z * F12 (1/2 , 3/2, 3/2, -z^2/4) z in Z (XY) result in Z (XY) FOCAL 

61  ZSOLVE  Solves for F(z)=0 Newton's method Fnc. name in R06 Calculates one root for f(z) FOCAL 

62  ZWL  Lambert W function see manual z in Z (XY) W(z) in Z (XY) FOCAL 

63  ZYBS  Bessel Y function see manual w in W, z in Z (XY) Y(w,z) in Z (XY) FOCAL 

64  ZZETA  Riemann Zeta function Borwein Algorithm z in Z (XY) result in Z (XY) by Jean-Marc Baillard 

0  -IMAGINE  Section Header n/a n/a n/a  

1  1/Z  alternative ZINV (Uses TOPOL)  1/r * exp(-i arg)  z in Z (XY)  1/z in X,Y registers and ALPHA  does LastZ 

2  e^Z  alternative ZEXP   e^z = e^x * (cos y + i sin y)  z in Z (XY)  exp(z) in Z (XY)  does LastZ 

3  EIZ/IZ  spherical hankel h1(0,z)  h(1)(0,z) = exp(i*z) / i*z  z in Z (XY) r esult in Z (XY)  does LastZ 

4  SQRTZ  Alternative SQRT (Uses TOPOL)  sqr(z)=sqr( r) * e^(i*Arg/2)  z in Z (XY)  main value of z^1/2 in Z (XY)  does LastZ 

5  X^1/Z  Hybrid Y^X a^1/z = exp(1/ z*Ln a)   x in X reg; z in Y,Z regs  x^z in Z (XY)   does LastZ 

6  X^Z  Hybrid Y^X a^Z = exp( z*Ln a)  x in X reg; z in Y,Z regs  x^z in Z (XY)  does LastZ 

7  Z*I  Multiplies by I (90 deg. Rotation)  iz = -Im(z) + I Re(z)  z in Z (XY)  z*i in L1 & XY  does LastZ 

8  Z/I  Divides by I (-90 deg. Rotation)  iz = -Im(z) + I Re(z)  z in Z (XY)  z*i in L1 & XY  does LastZ 



(c) Ángel M. Martin – May 2021 

 

 119 

# Function Description Formula Input Output Comments 

9  ZBSL  _  Bessel Functs. Sub-Launcher n/a  Prompts for Function  Executes Function  

10  ZCONJ  Complex Conjugate conj = x – iy  z in Z (XY)  Inverts sign of Im(z)  does LastZ 

11  ZDISP  Displays Z in LCD Z = Re:Im  Values in Y, X  String in LCD  No negative values! 

12  ZDBL  Doubles z 2*z  z in Z (XY)  2z in Z (XY)   does LastZ 

13  ZFRC  Makes Re(z), Im(z) fractional Int(Re(z) = Int(Im(z)) = 0  z in Z (XY)  Result in Z (XY)  does LastZ 

14  ZHALF  Halves z  z/2  z in Z (XY)  z/2 in Z (XY) Does LastZ 

15  ZHGF  _  Hypergeometric Launcher  n/a  Prompts for choice  Executes function  

16  ZHYP  _  Hyperbolics Launcher  n/a  Prompts for choice  Executes function  

17  ZIMAG? is Im(z)=0?  is Im(z)=0?  z in Z (XY)  YES/NO (skips if false)   

18  ZIN? Is z inside the unit circle?  is |z|<1?  z in Z (XY)  YES/NO (skips if false)   

19  ZINT Makes Re(z) and Im(z) integers  Re(z) = Int[Re(z)];  Im(z)=Int[Im(z)]  z in Z (XY)  Result in Z (XY) Does LastZ 

20  ZMTV  _ Multi-functions Launcher  n/a  Prompts for choice  Executes function FOCAL 

21  ZNXT  _ NEXT function Launcher  n/a  Prompts for Choice  Executes functions  

22  ZPI Pi as a complex number  Zpi = pi + j0  none  Pi in Z(XY) Lifts Buffer 

23  ZPRT  _ Poly-roots functions Launcher  n/a  Prompts for Choice  Executes function  

24  ZREAL? Is Re(z)=0?  Is Re(z)=0?  z  in Z (XY)  YES/NO (skips if false)   

25  ZQUAD Shows quadrant for z  Quad# as function of location  z in Z (XY)  Sets corresponding user flag 1-4 Clears other flags 1-4 

26  ZSIGN Complex SIGN  sign = z/|z|  z in Z (XY)  z/Mod(z) in X,Y does LastZ 

27  ZTONE Makes a sound  Frequency and duration   z in Z (XY)  Makes sound Shows Z at end 

28  ZTRP Exchanges Re(Z) and Im(Z)  zTrp = y + iX  z in Z (XY)  Im(z) in X, Re(z) in Y does LastZ 

29  -DELUXE  Section Header n/a n/a n/a  

30  ZAMN Complex Arithmetic Mean AM =  zk / n  Control word bbb.eee in X  Result in Z (XY) Data expected in ZRegs 

31  ZANGJ Anger J(n,z) Function  See manual  z in(ZY), n in X  Result in Z (XY)  

32  ZCRF Carlson Integral 1st. kind  See manual   n,n,p,z in stack  Result in X  Complex conjugate 

33  ZCRJ Carlson Integral 3rd. kind  See manual  n,n,p,z in stack  Result in X  Complex conjugate 

34  ZCSX Fresnel Integrals C(x) & S(x)  See manual  X in X  S(x) in Y, C(x) in X FOCAL 

35  ZELIP1 Incomplete Elliptic integral 1st kind  Complex amplitude, real modulus  a in (Y,Z), m in X  Result in Z (XY) FOCAL 

36  ZELIP2 Incomplete Elliptic Integral 2nd kind  Complex amplitude, real modulus  a in (Y,Z), m in X  Result in Z (XY) FOCAL 

37  ZELIPE Complete Elliptic Integral 2nd kind  Uses Hypergeometric functions  Complex m in Z (XY)  Result in Z (XY)  Requires |z|<1 

38  ZELIPK Complete Elliptic Integral 1st kind  Uses Hypergeometric functions  Complex m in Z (XY)  Result in Z (XY)  Requires |z|<1 

39  ZELK Complete Elliptic Integral 1st kind  Uses AGM  Complex m in Z (XY))  Result in Z (XY) FOCAL 

40  ZELPKE Comlete Elliptic Intg. 1st & 2nd kinds  Uses AGM and AGM2  Complex m in Z (XY)  Results in W and Z (XY) FOCAL 

41  ZGHM Geometric-Harmonic Mean  GHM  w in W, z in Z (XY)  Result in Z (XY) does LastZ 

42  ZGMN Complex Geometric mean  GM = [ Zk ]^1/k  Control word bbb.eee in X  Geometric mean in Z (XY) Data expected in ZRegs 
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43  ZHMN Complex Harmonic Mean  HM =  1 / [1/zk]  Control word bbb.eee in X  Harmonic mean in Z (XY) Data  expected in ZRegs 

44  ZINPT Enters complex data in ZRegs  n/a  Control word bbb.eee in X  Data is stored sequentially FOCAL 

45  ZKLV1 Kelvin Functions 1st kind  Uses Hypergeometric Function  x in X  bei(x) in Y, ber(x) in X FOCAL 

46  ZOUPT Shows complex data  n/a  Control word bbb.eee in X  Data is shown sequentially  SF 21 to stop each value 

47  ZPD1 Complex Polynomial 1st  derivative  P’(z) =  k ak z^*k-1 |k=1,2 .. n  z0 in (Y,Y) ; bbb.eee in X  dP(z)/dz in “Z” (XY)   does Lastz 

48  ZPD2 Complex Polynomial 2nd derivative  P”(z) =  k (k-1) ak z^k-2 | k=2,3..n  z0 in (Y,Y) ; bbb.eee in X  d2P(z)/dz2 in “Z” (XY)  does Lastz 

49  ZPLI Complex Polynomial Primitive  IT[P(z)] =  ak z^ k+1 / (k+1) | k=0,1..n   z0 in (Y,Y) ; bbb.eee in X  Result in Z (XY)  does LastZ 

50  ZPSIN Complex Poly-Gamma function  See manual  Z in (Y,X) ; n in X  Result in Z (XY)  

51  ZSJB Complex Spherical Bessel J(w,z)  j(w,z) = sqr(/2z) J(w+1/2, z)  w in W, z in Z (XY)  Result in Z (XY)  

52  ZSYB Complex Spherical Bessel Y(w,z)  y(w,z) = sqr(/2z) Y(w+1/2, z)  w in W, z in Z (XY)  Result in Z (XY)  

53  ZWEBE Weber function E(n,z)  See manual  z in (Y,X) ; n in X  Result in Z (XY)  

54  CAT+ _ Sub-function Catalog  n/a  none  Sequential Enumeration  XEQ executes function 

55 (c) Copyright Message n/a none Shows copyright in ALPHA “(c) AMC 2016“ 

56 LASTF  Executes last function  n/a  Previous call by launcher  Re-executes function  Includes sub-functions 
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1 -ZBUFFER Section Header n/a None None   

2 CLZB Clears Z buffer n/a None buffler cleared   

3 L1=XY? is L1 equal to XY? n/a None Y/N, skip if false   

4 L1<>L _ _ Swap L1 & Level n/a Level# as suffix levels exchanged Prompting 

5 L1<>L2 Swap L1 & L2 n/a None levels exchanged   

6 L1<>L3 Swap L1 & L3 n/a None levels exchanged   

7 L1<>L4 Swap L1 & L4 n/a None levels exchanged   

8 L1<>LX Swap L1 & Level n/a level in X levels exchanged   

9 L2=ZT? is L2 equal to ZT? n/a None Y/N, skip if false   

10 L2>ZT Copies L2 into ZT n/a None L2 copied to ZT   

11 LVIEW _ View Level n/a Level# as suffix Transposed value! Prompting 

12 LVIEWX View level by X n/a level in X Transposed value!   

13 PREMON Copies XY into L0 and finds Zbuffer n/a Re(z) in X; Im(z) in Y none   

14 PSTMON Copies XY into L1 and synch's up n/a Re(z) in X; Im(z) in Y None   

15 RG>ZB _ _ Copies registers to Z buffer n/a Reg# as suffix data copied from registers Prompting 

16 ST>ZB Copies real stack to L1 & L2 n/a None stack copied to buffer   

17 XY>L _ Copies XY into Level n/a Level# as suffix XY copied to LEVEL Prompting 

18 XY>L0 Copies XY into L0 n/a Re(z) in X; Im(z) in Y XY copied to L0   

19 XY>L1 Copies XY into L1 n/a Re(z) in X; Im(z) in Y XY copied to L1   

20 ZB>RG _ _ copies buffer to registers n/a Reg# as suffix data copied to registers Prompting 

21 ZB>ST Copies L1 & L2 into real stack n/a None buffer copied to Stack   

22 ZBDROP Drops  Z buffer one level n/a None levels dropped Drops Buffer 

23 ZBHEAD Zbuffer Header info n/a None header register in ALPHA   

24 ZBLIFT Lifts Z buffer one level n/a None buffer lifted Lifts Buffer 

25 ZBVIEW Shows Z Buffer n/a None shows header & all levels FOCAL 

26  -B UTILS Section Header n/a None None   

27 B? Does buffer exist? n/a buffer id# in X YES/NO (skips if false) CCD Module 

28 BLIST lists all buffers existing n/a none list in Alpha D. Yerka 

29 BLNG? Buffer length n/a buffer id# in X buffer size in X CCD Module 

30 BX>RG copies buffer to registers n/a buffer id# in X data copied into R00 to end David Assm 

31 CLB Clear buffer n/a buffer id# in X Clears buffer from memory CCD Module 

32 FINDBX finds buffer address n/a buffer id# in X buffer address in X D. Yerka 

33 MAKEBX makes buffer in RAM n/a (id#,size) in X buffer created D. Yerka 

34 RG>BX copies registers to buffer n/a Data in R00 to Rnn Copied to Buffer David Assm 

 

(*) Buffer functions have been moved to the BUFFERLAND Module, under a dedicated section for the 41Z case.  

../../../Mis%20Documentos/HP-4141Z%22%20l
../../../Mis%20Documentos/HP-4141Z%22%20l
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Appendix 5.- Buffer logic function table. 

 

   Pre-Exec  Post-Exec  

     Alpha in XY XY to L0 XY to L1 Buffer LIFT L2 -> ZT   Buffer DROP XY into L1 L1,2 -> XYZT ZAVIEW  

1 - HP-41 Z Initialize Buffer  yes no yes no no   no no no yes  

2 W^Z Power yes yes no no yes PREDUAL yes yes yes yes POSTDUAL 

3 Z+ Addition yes yes no no yes PREDUAL yes yes yes yes POSTDUAL 

4 Z- Substraction yes yes no no yes PREDUAL yes yes yes yes POSTDUAL 

5 Z* Multiply yes yes no no yes PREDUAL yes yes yes yes POSTDUAL 

6 Z/ Divide yes yes no no yes PREDUAL yes yes yes yes POSTDUAL 

7 ZWANG Angle between yes yes no no yes PREDUAL yes yes yes no PSTDUAL-2 

8 ZWCROSS Cross Product yes yes no no yes PREDUAL yes yes yes no PSTDUAL-2 

9 ZWDET Determinat yes yes no no yes PREDUAL yes yes yes no PSTDUAL-2 

10 ZWDIST Distance yes yes no no yes PREDUAL yes yes yes no PSTDUAL-2 

11 ZWDOT Dot Product yes yes no no yes PREDUAL yes yes yes no PSTDUAL-2 

12 ZWLINE Line Equation yes yes no no yes PREDUAL yes yes yes no PSTDUAL-2 

13 Z=W? is Z=W? yes no yes no yes PREDUL-2 no no no no   

14 Z=WR? is Z=W round? yes no yes no yes PREDUL-2 no no no no   

15 Z#W? is Z not W? yes no yes no yes PREDUL-2 no no no no   

16 Z=0? is Z Zero? yes no yes no no PREMON-2 no no no no   

17 Z#0? is Z not zero? yes no yes no no PREMON-2 no no no no   

18 Z=I? is Z = i? yes no yes no no PREMON-2 no no no no   

19 ZREAL? Is Z real? yes no yes no no PREMON-2 no no no no   

20 ZIMAG? Is Z imag? yes no yes no no PREMON-2 no no no no   

21 ZIN? |Z|<1? yes no yes no no PREMON-2 no no no no   

22 ZOUT? |Z|>1? yes no yes no no PREMON-2 no no no no   

23 ZUNIT? |Z|=1? yes no yes no no PREMON-2 no no no no   

24 X^Z Hybrid Power yes yes no no no PREMON  no yes yes yes POSTMON 

25 Z^2 Z^2 yes yes no no no PREMON  no yes yes yes POSTMON 

26 Z^X Z^X yes yes no no no PREMON  no yes yes yes POSTMON 

27 ZACOS ACOS yes yes no no no PREMON  no yes yes yes POSTMON 

28 ZACOSH ACOSH yes yes no no no PREMON  no yes yes yes POSTMON 

29 ZALOG 10^Z yes yes no no no PREMON  no yes yes yes POSTMON 

30 ZASIN ASIN yes yes no no no PREMON  no yes yes yes POSTMON 

../41Z_v4H.XLS#TITLE0#TITLE0
../41Z_v4H.XLS#WZ#WZ
../41Z_v4H.XLS#ZPLUS#ZPLUS
../41Z_v4H.XLS#ZMINUS#ZMINUS
../41Z_v4H.XLS#ZTIMES#ZTIMES
../41Z_v4H.XLS#ZDIV#ZDIV
../41Z_v4H.XLS#zwang#zwang
../41Z_v4H.XLS#zwcross#zwcross
../41Z_v4H.XLS#zwdetm#zwdetm
../41Z_v4H.XLS#ZDIST#ZDIST
../41Z_v4H.XLS#zwdot#zwdot
../41Z_v4H.XLS#zwline#zwline
../41Z_v4H.XLS#ZW#ZW
../41Z_v4H.XLS#ZEQWR#ZEQWR
../41Z_v4H.XLS#ZW#ZW
../41Z_v4H.XLS#ZZERO#ZZERO
../41Z_v4H.XLS#ZZERO#ZZERO
../41Z_v4H.XLS#ZI#ZI
../41Z_v4H.XLS#ZREAL#ZREAL
../41Z_v4H.XLS#ZIMAG#ZIMAG
../41Z_v4H.XLS#within#within
../41Z_v4H.XLS#beyond#beyond
../41Z_v4H.XLS#unity?#unity?
../41Z_v4H.XLS#ZPOW#ZPOW
../41Z_v4H.XLS#ZQUAD#ZQUAD
../41Z_v4H.XLS#ZTON#ZTON
../41Z_v4H.XLS#ZACOS#ZACOS
../41Z_v4H.XLS#ZACOSH#ZACOSH
../41Z_v4H.XLS#tentox#tentox
../41Z_v4H.XLS#ZASIN#ZASIN
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31 ZASINH ASINH yes yes no no no PREMON  no yes yes yes POSTMON 

32 ZATAN ATAN yes yes no no no PREMON  no yes yes yes POSTMON 

33 ZATANH ATANH yes yes no no no PREMON  no yes yes yes POSTMON 

34 ZCONJ X-Yj yes yes no no no PREMON  no yes yes yes POSTMON 

35 ZCOS COS yes yes no no no PREMON  no yes yes yes POSTMON 

36 ZCOSH COSH yes yes no no no PREMON  no yes yes yes POSTMON 

37 ZDBL 2*Z yes yes no no no PREMON  no yes yes yes POSTMON 

38 ZEXP E^Z yes yes no no no PREMON  no yes yes yes POSTMON 

39 ZHALF Z/2 yes yes no no no PREMON  no yes yes yes POSTMON 

40 ZINV 1/Z yes yes no no no PREMON  no yes yes yes POSTMON 

41 ZLN Ln(Z) yes yes no no no PREMON  no yes yes yes POSTMON 

42 ZINT  yes yes no no no PREMON  no yes yes yes POSTMON 

43 ZFRC  yes yes no no no PREMON  no yes yes yes POSTMON 

44 ZLOG Log(Z) yes yes no no no PREMON  no yes yes yes POSTMON 

45 ZNEG -Z yes yes no no no PREMON  no yes yes yes POSTMON 

46 ZRND rounded Z yes yes no no no PREMON  no yes yes yes POSTMON 

47 ZSIGN Sign(Z) yes yes no no no PREMON  no yes yes yes POSTMON 

48 ZSIN SIN yes yes no no no PREMON  no yes yes yes POSTMON 

49 ZSINH SINH yes yes no no no PREMON  no yes yes yes POSTMON 

50 ZSQRT Square Root yes yes no no no PREMON  no yes yes yes POSTMON 

51 ZTAN TAN  yes yes no no no PREMON  no yes yes yes POSTMON 

52 ZTANH TANH yes yes no no no PREMON  no yes yes yes POSTMON 

53 ZTRP Re<>Im yes yes no no no PREMON  no yes yes yes POSTMON 

54 ZARG Zarg yes yes no no no PREMON  no yes yes no PSTMON-2 

55 ZMOD |Z| yes yes no no no PREMON  no yes yes no PSTMON-2 

56 ZNORM |Z|^2 yes yes no no no PREMON  no yes yes no PSTMON-2 

57 ZREC Rectangular  yes yes no no no PREMON  no yes yes yes POSTMON 

58 ZPOL Polar Notation yes yes no no no PREMON  no yes yes yes POSTMON 

59 e^Z alternate ZEXP yes yes no no no PREMON  no yes yes yes POSTMON 

60 EIZ/IZ function yes yes no no no PREMON  no yes yes yes POSTMON 

61 Z^1/X hybrid power yes yes no no no PREMON  no yes yes yes POSTMON 

62 Z*I rotation yes yes no no no PREMON  no yes yes yes POSTMON 

63 Z/I rotation yes yes no no no PREMON  no yes yes yes POSTMON 

64 NXTASN Next ASIN yes yes no no no PREMON  no yes yes yes POSTMON 

65 NXTACS Next ACOS yes yes no no no PREMON  no yes yes yes POSTMON 

66 NXTATN Next ATAN yes yes no no no PREMON  no yes yes yes POSTMON 

../41Z_v4H.XLS#ZASINH#ZASINH
../41Z_v4H.XLS#ZATAN#ZATAN
../41Z_v4H.XLS#ZATANH#ZATANH
../41Z_v4H.XLS#ZCNJ#ZCNJ
../41Z_v4H.XLS#zcos#zcos
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../41Z_v4H.XLS#zdbl#zdbl
../41Z_v4H.XLS#ZEXP#ZEXP
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../41Z_v4H.XLS#LNZ#LNZ
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../41Z_v4H.XLS#ZSQRT#ZSQRT
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../41Z_v4H.XLS#ztanh#ztanh
../41Z_v4H.XLS#ZREV#ZREV
../41Z_v4H.XLS#zarg2#zarg2
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../41Z_v4H.XLS#znorm#znorm
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67 NXTLOG Next LN yes yes no no no PREMON  no yes yes yes POSTMON 

68 NXTNRT Next Nth. Root yes yes no no no PREMON  no yes yes yes POSTMON 

69 ZAVIEW Output Z  yes no no no no   no no no yes   

70 CLZ Clear Z  no no no no no   no yes yes yes POSTMON 

71 ZIMAG Clear Re(z) no yes no no no   no yes yes yes POSTMON 

72 ZREAL  Clear Im(z) no yes no no no   no yes yes yes POSTMON 

73 CLZST Clear Zstack no no no no no   no no yes yes PSTMON-3 

74 Z<>  Exchange   yes no no no no PREMON  no yes yes yes POSTMON 

75 Z<>W Exchange Stack yes no yes no no PREMON-2 no no yes yes PSTMON-3 

76 Z<>R Exchange Stack yes no yes no no PREMON-2 no no yes yes PSTMON-3 

77 Z<>S Exchange Stack yes no yes no no PREMON-2 no no yes yes PSTMON-3 

78 LASTZ last argument yes no yes yes no PREMON-2 no no yes yes PSTMON-3 

79 ZR^ Roll Up Zstack yes no yes yes no PREMON-2 no no yes yes PSTMON-3 

80 ZRCL Recall to Z yes no yes yes no PREMON-2 no yes yes yes POSTMON 

81 IMAGINE inputs Im(z) yes no yes yes no PREMON-2 no yes yes yes POSTMON 

82 ZENTER^ Enter level yes no yes yes no PREMON-2 no no yes yes PSTMON-3 

83 ZREAL^  Input number yes no no yes no PREMON  no yes yes yes POSTMON 

84 ZIMAG^  Input number yes no no yes no PREMON  no yes yes yes POSTMON 

85 ZRDN Roll Down ZSTK yes no yes no no PREMON-2 yes no yes yes PSTMON-3 

86 ZREPL Replicates Z yes no yes no no PREMON-2 no no yes yes PSTMON-3 

87 ZSTO Stores Z yes no yes no no PREMON-2 no no yes yes PSTMON-3 
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