This is an old revision of the document!
Table of Contents
DM15L Progs
Dumps taken from the DM15L using a serial console session in Putty.
Stock Swiss Micros Firmware
Dumps are also converted to readable program listings using the Swiss Micros online encode/decode tool at https://technical.swissmicros.com/decoders/nut/
Normal + "Complex Z to....."
LBL E converts Z=R±jX to RL, SWR, |ρ|∠ρ, |Z|∠Z
Data input :
if Z = R + j X, put R in Y-stack and X in X-stack and then run LBL E
- R ENTER
- X (and CHS as needed)
- F
- E
Results appear:
- Stack X → Return Loss
- Stack Y → SWR
- Stack Z → (Re) |ρ| (Im) ∠ρ
- Stack T → (Re) |Z| (Im) ∠Z
DM15_M1B 04 000000fffff000 00000000000008 0000000000000c 00000996010eae 08 00000000000000 2faf8befbe2280 00000000000000 00000000000000 10 91000000000000 00000000000000 00000000000000 02875000000998 14 f0000000000000 1b2d2d2d2d2d2d 000000000002ef 00000000000000 18 00000000000000 0000000000007f 00000000a00000 01900000000001 1c 02232142865997 01800000000002 02232142865997 01004474273000 20 05302556024001 00000000000000 00000000000000 00000000000000 ec 00000000000000 00000000000000 00000000000000 0000000000b237 f0 36a43433a43231 44db43e1a43433 42db41e1a43231 47c3fcf0f2bc35 f4 46fda5cff185cf f145b3db44db43 fdfaf0f5a43231 fbf0f5a4323141 f8 c5420eb23344fc c3f0f2bcfdfaf1 33fbf143fda2cf f182cff142cafd fc 0ab2c3fcf0f2bc fdfaf132fbf142 0bb2fdfbf132fa f142ccfdf0f20c A: 000000fffff000 B: 000000fffffeae C: 00000996010eae S: 00000000000000 M: 00000000000000 N: 00000000000000 G: 04
"Normal"
### 27/7/22 #### # This is the usual set of 3 useful tool progs I have in the DM15L for quick calculation/conversion # of antenna parameters. #
- Ref Power ENTER Fwd Power fA → SWR x<>y RL
- SWR fB → Return Loss
- Return Loss fC → SWR
DM15_M1B 00 03400000000001 01000000000001 08000000000000 00000000000000 04 155000000ff000 00000000000008 0000000000000c 00002000010eae 08 00000000000000 2faf0bde7aa28f 000080bcbcaf80 00000000000000 10 00000000000000 01000000000001 00000000000000 03400000000001 14 f7365289440000 1b2d2d2d2d2d2d 000000000004f8 00000000000000 18 00000000000000 0000000000007f 00000000a00000 01387265622000 1c 01387265622000 01579783596001 05000000000001 02500000000003 20 01800000000002 00000000000000 00000000000000 00000000000000 f8 000000b23344fc c3f0f2bcfdfaf1 33fbf143fda2cf f182cff142cafd fc 0ab2c3fcf0f2bc fdfaf132fbf142 0bb2fdfbf132fa f142ccfdf0f20c A: 155000000ff000 B: 155000000ffeae C: 00002000010eae S: 00000000000000 M: 00000000000000 N: 05500000000001 G: 06
N-Queens Benchmark 27/7/22
DM15_M1B 00 08000000000000 08000000000000 00000000000000 00000000000000 04 065140fffff000 00000000000008 0000000000000c 00000000999eae 08 00000000000000 22af8d9e7e0080 00000000000000 00000000000000 10 08000000000000 08000000000000 01000000000000 01000000000000 14 f0000000000537 1b2d2d2d2d2d2d 000000000007f7 00000000000000 18 00000000000000 0000000000007f 00000000a00000 04000000000000 1c 01000000000000 03000000000000 06000000000000 02000000000000 20 07000000000000 05000000000000 00000000000000 08000000000000 24 08760000000002 00000000000000 00000000000000 00000000000000 f4 00000000000000 00000000000000 00000000000000 b25104137030a0 f8 dff1117086bddf f19730031276fb 3930b313ecfb86 c4973986973010 fc ec39a9dff10249 3091dff1019650 973080dff11475 50300060f8a50a A: 065140fffff000 B: 065140fffffeae C: 00000000999eae S: 00000000000000 M: aaaaaaaaaaaaaa N: 06514000000000 G: 04
Savage
Dump above decoded at Swiss micros |
001 LBL 8 | 42,21, 8 002 RCL (i) | 45 24 003 RCL .9 | 45 .9 004 2 | 2 005 * | 20 006 PI | 43 26 007 * | 20 008 / | 10 009 RTN | 43 32 010 LBL 9 | 42,21, 9 011 x=0 | 43 20 012 GTO 5 | 22 5 013 GTO 4 | 22 4 014 RTN | 43 32 015 LBL .0 | 42,21,.0 016 x=0 | 43 20 017 GTO 4 | 22 4 018 GTO 5 | 22 5 019 RTN | 43 32 020 LBL 6 | 42,21, 6 021 RCL 0 | 45 0 022 1 | 1 023 0 | 0 024 0 | 0 025 0 | 0 026 / | 10 027 1 | 1 028 + | 40 029 STO I | 44 25 030 RTN | 43 32 031 LBL 7 | 42,21, 7 032 GSB 6 | 32 6 033 LBL 3 | 42,21, 3 034 RCL I | 45 25 035 INT | 43 44 036 2 | 2 037 / | 10 038 FRAC | 42 44 039 F? 0 | 43, 6, 0 040 GTO 9 | 22 9 041 GTO .0 | 22 .0 042 LBL 4 | 42,21, 4 043 GSB 8 | 32 8 044 5 | 5 045 0 | 0 046 * | 20 047 STO (i) | 44 24 048 ISG I | 42, 6,25 049 GTO 3 | 22 3 050 RTN | 43 32 051 LBL 5 | 42,21, 5 052 GSB 8 | 32 8 053 5 | 5 054 0 | 0 055 / | 10 056 STO (i) | 44 24 057 ISG I | 42, 6,25 058 GTO 3 | 22 3 059 RTN | 43 32 060 GTO 7 | 22 7 061 LBL A | 42,21,11 062 ENG 3 | 42, 9, 3 063 SF 0 | 43, 4, 0 064 STO .9 | 44 .9 065 x<>y | 34 066 TEST 2 | 43,30, 2 067 CF 0 | 43, 5, 0 068 ABS | 43 16 069 STO 0 | 44 0 070 GSB 6 | 32 6 071 LBL 1 | 42,21, 1 072 RCL I | 45 25 073 INT | 43 44 074 GSB 0 | 32 0 075 F? 0 | 43, 6, 0 076 1/x | 15 077 STO (i) | 44 24 078 ISG I | 42, 6,25 079 GTO 1 | 22 1 080 GTO 7 | 22 7 081 LBL 0 | 42,21, 0 082 2 | 2 083 * | 20 084 1 | 1 085 - | 30 086 1 | 1 087 8 | 8 088 0 | 0 089 * | 20 090 RCL 0 | 45 0 091 2 | 2 092 * | 20 093 / | 10 094 SIN | 23 095 2 | 2 096 * | 20 097 RTN | 43 32
Dump
###################################################### DM15 00 01544068044001 01544068044001 01544068044001 00000000000000 04 1154407ffff000 00000000000008 0000000000000c 00000000000eae 08 00000000000000 362f0d9e8a808f 00000000002a00 00000000000000 10 00000000000000 00000000000000 00000000000000 02000000000001 14 f0000000000027 c0d2d2d2d2d2d2 000000000004f8 00000000000000 18 00000000000000 0000000000007f 00000000a00000 00000000000000 c0 01406828223000 01406828223000 01544068044001 00000000000000 f8 000000b23344fc c3f0f2bcfdfaf1 33fbf143fda2cf f182cff142cafd fc 0ab2c3fcf0f2bc fdfaf132fbf142 0bb2fdfbf132fa f142ccfdf0f20c A: 1154407ffff000 B: 1154407ffffeae C: 00000000000eae S: 00000000000000 M: 15440680436000 N: 01544068044001 G: 04
Dump 23/12/21
### 23/12/21 # A = Stack Y -> Ref, Stack X ->Fwd -> [f][A] -> Stack Y = RL, Stack X = SWR # B = SWR -> RL # C = RL -> SWR # D = PiAttn : (y = attn, x = Zo) -> [f][D] -> (y = series R, x = shunt Rs) # E = Fibonacci Number x = n -> f(n) # DM15_M1B 00 03400000000001 01000000000001 08000000000000 00000000000000 04 155000000ff000 00000000000008 0000000000000c 00002000010eae 08 00000000000000 2faf0bde7aa28f 000080bcbcaf80 00000000000000 10 00000000000000 01000000000001 00000000000000 03400000000001 14 f7365289446057 1b2d2d2d2d2d2d 000000000001f1 00000000000000 18 00000000000000 0000000000007f 00000000a00000 01387265622000 1c 01387265622000 01579783596001 05000000000001 02500000000003 20 01800000000002 00000000000000 00000000000000 00000000000000 f0 00000000000000 000000000000b2 3344fcc3f0f2bc fdfaf133fbf143 f4 fda2cff182cff1 42cafd0ab2c3fc f0f2bcfdfaf132 fbf1420bb2fdfb f8 f132faf142ccfd f0f20cb2333444 c0cffdc2cff2fb ba32f143c0cffd fc a2cff182cff142 ccfdc3f0f241c5 400db21182c5b1 fa01f0c1f1400e A: 155000000ff000 B: 155000000ffeae C: 00002000010eae S: 00000000000000 M: 00000000000000 N: 05500000000001 G: 06
Dump 10/2/22
# # 10 Feb 2022 # Butterworth Filter designer # enter filter order (n) into Y register (+ = HPF, - = LPF) , # enter Freq into X register # execute program with [f] [A] # Values for each component are obtained from registers R1 -> Rn DM15_M1B 00 02251666050002 03218976343993 03218976343993 00000000000000 04 16640fff000000 00000000000008 0000000000000c 00012012012eae 08 00000000000000 36800bdf7e820f bef20200000000 00000000000000 10 05000000000000 03218976343993 06005000000000 02000000000000 14 f0000000012377 1b2d2d2d2d2d2d 000000000005f0 00000000000000 18 00000000000000 0000000000007f 00000000a00300 04918158214989 1c 09947183945992 04918158214989 03218976343993 01103787069994 20 04547284088990 01103787069994 04026420096990 08509227540993 24 02583151782990 04031222906993 05481145266989 07025940305993 28 09506412356989 00000000000000 00000000000000 00000000000000 2c 04000000000007 00000000000000 00000000000000 00000000000000 f0 0000b2fcf2c7fd fcf230fcf0f8f1 fbf1fcf2001811 9596ce50ff20eb f4 87012640b340ff 72c56930ff83ff 0a17129596fdfc b6fcf25986eb87 f8 022608b2139596 fdf0f58605b213 9596fcf0f58604 10ff1950ffa3fd fc f2eb87032607b2 97faf1fdf0f0f0 f13006b21514ec 00ffb21415ec09 A: 16640fff000000 B: 16640fff000eae C: 00012012012eae S: 00000100000000 M: 02000000000001 N: 06639528095001 G: 23
Dump 07/02/25
############### # 7 Feb 2025 # LBL A = y : ref/ x : fwd fA -> y : RL / x : SWR # LBL B = SWR -> RL # LBL C = RL -> SWR # LBL D = Gas calc (tare ENTER gross ENTER cylinder "full gas weight" (i.e. 6/13/19kg) f D -> percentage full # LBL E = DTT Freq <-> Channel conversion DM15_M1B 00 09806650000000 02200000000001 03060000000002 00000000000000 04 066261ff934000 00000000000008 0000000000000c 00000991000eae 08 00000000000000 39a287df7e2200 dba00240000000 00000000000000 10 01579783596001 01579783596001 00000000000000 08000000000000 14 f0000000000014 1b2d2d2d2d2d2d 000000000005f0 00000000000000 18 00000000000000 0000000000007f 00000000a00000 01387265619000 1c 01387265622000 01579783596001 00000000000000 00000000000000 f0 0000b2fdfbf1c5 faf1c1c1ccfdf0 f20cb2c3fcf0f2 bcfdfaf1c5fbf1 f4 c1c10bb23344c3 fcf0f2bcfdfaf1 33fbf143fda2cf f182cff142cafd f8 0ab2fcf0f0f1fd 32fbc531fcf4f5 f4c0fafdf6f1fc f0f0f1a3c5ebc1 fc 40c441c4420db2 faf6f0f3fcf809 b2fdf8fbf6f0f3 1978c5f6f0f30e A: 066261ff934000 B: 066261ff934eae C: 00000991000eae S: 00000100000000 M: 03060000000002 N: 06626070150966 G: 04
New LF15C Firmware
Firmware details
- Start of thread : https://www.hpmuseum.org/forum/thread-20046.html
- Serial Port dump info : https://www.hpmuseum.org/forum/thread-20046-post-194697.html#pid194697
- Serial Port settings
- Rate : 57600
- Data : 8 bit
- Stop : 1 bit
- Parity : None
- Flow Control : None
- To extract a dump from calculator press and hold STO
- the non-zero digits can be copy/pasted into a text file for storage
- To upload a previously saved dump
- copy it to clipboard and then
- press and hold RCL until the terminal shows
Paste PrgMemory: - in Putty ShiftFnInsert to paste clipboard text into terminal
Butterworth Filter
43 8 17 255 17 19 30 39 103 39 40 86 43 9 118 12 7 5 7 4 86 43 10 118 12 7 4 7 5 86 43 6 17 0 26 25 25 25 40 26 37 13 254 86 43 7 6 6 43 3 17 254 93 30 40 53 115 0 7 9 7 10 43 4 6 8 31 25 39 13 255 75 254 7 3 86 43 5 6 8 31 25 40 13 255 75 254 7 3 86 7 7 43 100 76 3 107 0 13 19 14 118 3 111 0 104 13 0 6 6 43 1 17 254 93 6 0 115 0 20 13 255 75 254 7 1 7 7 43 0 30 39 26 38 26 32 25 39 17 0 30 39 40 11 30 39 86 0
- Order n (+ is HPF, - is LPF) → y
- Frequency (Hz) → X
- fA
- Results are in R01 … R0n
Benchmarks
Savage, 8-queens, HP Maths and HP Trig
43 77 31 35 29 30 35 13 0 25 13 2 43 78 17 0 11 91 15 95 19 99 88 8 26 121 2 7 78 86 43 104 25 13 2 26 29 25 26 30 34 27 23 35 13 0 30 29 34 27 31 13 1 43 2 17 1 17 0 39 17 1 38 17 0 40 17 1 39 34 29 31 40 4 26 121 2 7 2 86 43 88 54 32 13 10 43 80 17 0 17 10 118 6 7 84 26 121 0 17 0 13 254 17 10 13 255 43 81 26 121 11 17 0 13 9 43 82 26 122 9 17 9 118 12 7 80 17 0 13 254 17 255 17 9 13 254 10 17 255 38 118 12 7 83 104 17 0 17 9 38 118 7 7 82 43 83 17 0 13 254 26 122 255 17 255 118 1 7 81 26 122 0 17 0 118 1 7 83 43 84 17 11 58 86 43 100 112 30 27 36 36 13 0 26 22 22 22 43 101 84 4 88 8 99 19 37 71 0 7 101 58 86 0
- Savage is prog
A: fA - 8-Queens is prog
88: f LBL 88- Both the above use
runTimeto measure execution time - returns result in y and time in x
- HP Museum Maths Benchmark is prog
E: fE.- Run for 60 seconds, press R/S and find result in reg 02 RCL02
- HP Museum Trig Benchmark is prog
77: fLBL 77.- Run for 60 seconds, press R/S and find result in reg 02 RCL02
Work Tools
43 104 40 4 13 2 26 125 2 26 126 2 40 13 3 26 38 17 3 26 37 40 92 30 25 39 24 17 3 86 43 103 22 22 26 38 14 26 37 40 92 30 25 39 24 86 43 102 30 25 40 12 22 22 26 37 14 26 38 40 86 43 101 13 2 10 13 1 10 13 0 22 93 14 53 26 25 25 39 26 35 40 37 29 27 31 27 39 17 1 14 38 17 2 40 26 25 25 39 86 43 100 34 25 31 14 118 8 7 1 32 39 34 25 35 37 86 43 1 34 25 35 38 32 40 86 0
- LBL A = DTT (Channel ↔ Freq )
- LBL B = Gas
- LBL C = Return Loss → SWR
- LBL D = SWR → Return Loss
- LBL E = Reflected Power & Forward Power → Return Loss & SWR
Work Tools & Benchmarks
43 55 31 35 29 30 35 13 0 25 13 2 43 56 17 0 11 91 15 95 19 99 88 8 26 121 2 7 56 86 43 44 25 13 2 26 29 25 26 30 34 27 23 35 13 0 30 29 34 27 31 13 1 43 45 17 1 17 0 39 17 1 38 17 0 40 17 1 39 34 29 31 40 4 26 121 2 7 45 86 43 88 54 32 13 10 43 80 17 0 17 10 118 6 7 84 26 121 0 17 0 13 254 17 10 13 255 43 81 26 121 11 17 0 13 9 43 82 26 122 9 17 9 118 12 7 80 17 0 13 254 17 255 17 9 13 254 10 17 255 38 118 12 7 83 104 17 0 17 9 38 118 7 7 82 43 83 17 0 13 254 26 122 255 17 255 118 1 7 81 26 122 0 17 0 118 1 7 83 43 84 17 11 58 86 43 66 112 30 27 36 36 13 0 26 22 22 22 43 67 84 4 88 8 99 19 37 71 0 7 67 58 86 43 104 40 4 13 2 26 125 2 26 126 2 40 13 3 26 38 17 3 26 37 40 92 30 25 39 24 17 3 86 43 103 22 22 26 38 14 26 37 40 92 30 25 39 24 86 43 102 30 25 40 12 22 22 26 37 14 26 38 40 86 43 101 13 2 10 13 1 10 13 0 22 93 14 53 26 25 25 39 26 35 40 37 29 27 31 27 39 17 1 14 38 17 2 40 26 25 25 39 86 43 100 34 25 31 14 118 8 7 1 32 39 34 25 35 37 86 43 1 34 25 35 38 32 40 86 0 0
- LBL A = DTT (Channel ↔ Freq )
- LBL B = Gas
- LBL C = Return Loss → SWR
- LBL D = SWR → Return Loss
- LBL E = Reflected Power & Forward Power → Return Loss & SWR
- Savage is prog is prog
66: f LBL 66 - 8-Queens is prog
88: f LBL 88- Both the above use
runTimeto measure execution time - returns result in y and time in x
- HP Museum Maths Benchmark is prog is prog
44: f LBL 44- Run for 60 seconds, press R/S and find result in reg 02 RCL02
- HP Museum Trig Benchmark is prog
55: fLBL 55.- Run for 60 seconds, press R/S and find result in reg 02 RCL02
Work Tools plus Dot/Cross/UVEC
43 12 22 104 40 86 43 10 66 22 59 90 59 14 10 39 10 39 90 37 86 43 11 66 22 59 90 59 10 39 10 39 90 14 38 86 43 104 40 4 13 2 26 125 2 26 126 2 40 13 3 26 38 17 3 26 37 40 92 30 25 39 24 17 3 86 43 103 22 22 26 38 14 26 37 40 92 30 25 39 24 86 43 102 30 25 40 12 22 22 26 37 14 26 38 40 86 43 101 13 2 10 13 1 10 13 0 22 93 14 53 26 25 25 39 26 35 40 37 29 27 31 27 39 17 1 14 38 17 2 40 26 25 25 39 86 43 100 34 25 31 14 118 8 7 1 32 39 34 25 35 37 86 43 1 34 25 35 38 32 40 86 0
- As above for work tools
- Dot Product of 2 complex numbers in y and x ⇒ Y . X : f LBL
10|Y||X|Cosθ- Y = Yre + j Yim
- X = Xre + j Xim
- Dot Product = YreXre + YimXim
- Cross Product of 2 complex numbers in y and x ⇒ Y ⊗ X : f LBL
11|Y||X|Sinθ- Y = Yre + j Yim
- X = Xre + j Xim
- Cross Product = YreXim - YimXre
- Unit Vector of a complex number in x : f LBL
12
Dot Product
LBL 10 →R Enter f I R ↑ f I x<>y R ↓ x R ↓ x R ↑ + RTN
Cross Product
LBL 11 →R Enter f I R ↑ f I R ↓ x R ↓ x R ↑ x<>y - RTN
UVEC
LBL 12 ENTER ABS / RTN
Page Info
Page created Thu May 26 17:35:39 2022 by John Pumford-Green
Page last updated: 23/01/26 15:55 GMT
— John Pumford-Green 24/04/23 16:04
